The reactions of acetone, 2,2,2-trifluoroacetone and hexafluoroacetone in methanesulfonic (MSA) and triflic acids (TFSA) with benzene have been studied at M06-2X/6-311+G(d,p) level using cluster-continuum model, where the carbonyl group is explicitly solvated by acid molecules. The introduction of a trifluoromethyl group into the ketone structure reduces the activation energy of the tetrahedral intermediates formation due to an increase of the electrophilicity of the carbonyl group and raises the activation and the reaction energies of the C-O bond cleavage in formed carbinol due to the destabilization of the corresponding carbocation. The introduction of the second trifluoromethyl group inhibits the hydroxyalkylation reaction due to a very strong increase of the reaction and activation energies of the C-O bond cleavage which becomes the rate determining step. The most important catalytic effect of TFSA compared to MSA is not the protonation of the ketone carbonyl, but the reduction of the activation and reaction energies of the carbinol C-O bond cleavage due to better protosolvation properties. Even for TFSA no complete proton transfer to carbonyl oxygen has been observed for free ketones. Therefore, the protonation energies of free ketones cannot be considered as a measure of ketone reactivity in the hydroxyalkylation reaction.
Complexes of 21,23-dioxaporphyrin with neutral Zn, Cd, Hg, Cu, Ag, and Au atoms as well as some one-dimensional arrays of those complexes containing up to ten repeat units were modeled at the PBE/def2-TZVPP level of theory with D3 empirical dispersion correction. The binding energy between the metal atom and the macrocycle was found to vary from 90 kcal/mol for Cu to -14 kcal/mol for Hg. Strong charge transfer from the metal to the macrocycle accompanied complex formation. The complexes were able to form dimers and nanoarrays that were held together mostly by dispersion forces. Different types of dimers were studied: face-to-face (F) and two types of parallel-displaced ones. F dimers were calculated to be the lowest-energy structures for Cu and Ag systems. Nanoarray formation was studied for these complexes. The band gaps (Eg) of the nanoarrays were found to be smaller than 1 eV, and decreased slightly as the number of repeat units in the nanoaggregates increased. The ionization potentials and electron affinities were greatly affected by the number of repeat units due to the delocalization of polarons over the entire nanoarray. The polaron delocalization and the related reorganization energies depended to a considerable extent on the metal present in the complex. For the studied nanoarrays, the reorganization energies for hole and electron transport decreased linearly with 1/n, where n is the number of repeat units in the nanoaggregate; for an infinitely long chain, the reorganization energy was zero for electron transport and 0.03-0.04 eV for hole transport.
Metal-free, Zn-, Cd-, and Hg-containing one-dimensional tetraphenylporphyrin arrays containing up to eight repeat units were modeled at the PBE/def2-SVP level of theory with D3 empirical dispersion correction. Two different configurations--face to face (F) and parallel displaced (P)--were detected, the latter being the most stable for all types of nanoarrays. According to the calculations, the binding that occurs in nanoarrays is mostly due to dispersion, with binding energies of 33-35 kcal/mol seen for the metal-free nanoarrays and energies of 37-40 kcal/mol for the metal-containing ones. The band gaps, estimated as the S0 → S1 excitation energies and extrapolated to the infinite chain limit using the TD-CAM-B3LYP/def2-SVP model, were close to 2 eV; the band gap size was barely dependent on the nature of the metal and the number of repeat units in the nanoarray. The ionization potentials and electron affinities were greatly influenced by the number of repeat units due to delocalization of polarons across each nanoarray. Polaron delocalization and the related reorganization energies were clearly dependent on the nature of the metal. For the metal-free and Zn-containing nanoarrays, the reorganization energies for hole and electron transport decreased linearly with 1/n, where n is the number of repeat units in the nanoaggregate. The reorganization energies therefore reach zero for an infinitely long chain. These energies for Cd- and Hg-containing nanoarrays were found to be one order of magnitude higher for both hole and electron transport due to the localization of polarons in these nanoarrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.