Structure-based virtual screening plays an important role in drug discovery and complements other screening approaches. In general, protein crystal structures are prepared prior to docking in order to add hydrogen atoms, optimize hydrogen bonds, remove atomic clashes, and perform other operations that are not part of the x-ray crystal structure refinement process. In addition, ligands must be prepared to create 3-dimensional geometries, assign proper bond orders, and generate accessible tautomer and ionization states prior to virtual screening. While the prerequisite for proper system preparation is generally accepted in the field, an extensive study of the preparation steps and their effect on virtual screening enrichments has not been performed. In this work, we systematically explore each of the steps involved in preparing a system for virtual screening. We first explore a large number of parameters using the Glide validation set of 36 crystal structures and 1,000 decoys. We then apply a subset of protocols to the DUD database. We show that database enrichment is improved with proper preparation and that neglecting certain steps of the preparation process produces a systematic degradation in enrichments, which can be large for some targets. We provide examples illustrating the structural changes introduced by the preparation that impact database enrichment. While the work presented here was performed with the Protein Preparation Wizard and Glide, the insights and guidance are expected to be generalizable to structure-based virtual screening with other docking methods.
The application of all-atom force fields (and explicit or implicit solvent models) to protein homology-modeling tasks such as side-chain and loop prediction remains challenging both because of the expense of the individual energy calculations and because of the difficulty of sampling the rugged all-atom energy surface. Here we address this challenge for the problem of loop prediction through the development of numerous new algorithms, with an emphasis on multiscale and hierarchical techniques. As a first step in evaluating the performance of our loop prediction algorithm, we have applied it to the problem of reconstructing loops in native structures; we also explicitly include crystal packing to provide a fair comparison with crystal structures. In brief, large numbers of loops are generated by using a dihedral angle-based buildup procedure followed by iterative cycles of clustering, side-chain optimization, and complete energy minimization of selected loop structures. We evaluate this method by using the largest test set yet used for validation of a loop prediction method, with a total of 833 loops ranging from 4 to 12 residues in length. Average/median backbone rootmean-square deviations (RMSDs) to the native structures (superimposing the body of the protein, not the loop itself) are 0.42/0.24 Å for 5 residue loops, 1.00/0.44 Å for 8 residue loops, and 2.47/1.83 Å for 11 residue loops. Median RMSDs are substantially lower than the averages because of a small number of outliers; the causes of these failures are examined in some detail, and many can be attributed to errors in assignment of protonation states of titratable residues, omission of ligands from the simulation, and, in a few cases, probable errors in the experimentally determined structures. When these obvious problems in the data sets are filtered out, average RMSDs to the native structures improve to 0.43 Å for 5 residue loops, 0.84 Å for 8 residue loops, and 1.63 Å for 11 residue loops. In the vast majority of cases, the method locates energy minima that are lower than or equal to that of the minimized native loop, thus indicating that sampling rarely limits prediction accuracy. The overall results are, to our knowledge, the best reported to date, and we attribute this success to the combination of an accurate all-atom energy function, efficient methods for loop buildup and side-chain optimization, and, especially for the longer loops, the hierarchical refinement protocol.
We present a novel protein-ligand docking method that accurately accounts for both ligand and receptor flexibility by iteratively combining rigid receptor docking (Glide) with protein structure prediction (Prime) techniques. While traditional rigid-receptor docking methods are useful when the receptor structure does not change substantially upon ligand binding, success is limited when the protein must be "induced" into the correct binding conformation for a given ligand. We provide an in-depth description of our novel methodology and present results for 21 pharmaceutically relevant examples. Traditional rigid-receptor docking for these 21 cases yields an average RMSD of 5.5 A. The average ligand RMSD for docking to a flexible receptor for the 21 pairs is 1.4 A; the RMSD is < or =1.8 A for 18 of the cases. For the three cases with RMSDs greater than 1.8 A, the core of the ligand is properly docked and all key protein/ligand interactions are captured.
Building on the previously developed multistate empirical valence bond model [U. W. Schmitt and G. A. Voth, J. Chem. Phys 111, 9361 (1999)] for the dynamics and energetics of an excess proton in bulk phase water, a second generation model is described. This model is shown to produce similar dynamic and structural properties to the previous model, while allowing for the use of the full hydronium charge. This characteristic of the model is required for its implementation in a host of realistic applications beyond bulk water. An improved state selection algorithm is also presented, resulting in a significantly reduced energy drift during microcanonical molecular dynamics simulations. The unusually high self diffusion constant of an excess proton in water due to the proton hopping (Grotthuss) process is observed in the simulation data and is found to be quantitatively in the same range as the experimental value if a quantum correction is taken into consideration. Importantly, a more complete analysis of proton transport process is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.