The current design of the bileaflet valve, the leaflets of which open outside first, differs significantly from the natural valve whose leaflets open center first. This difference generates a completely different flow field in the bileaflet valve compared to that in the natural heart valve. In a previous study, it was demonstrated that the valve design greatly affects the aortic flow field as well as the circulatory flow inside sinuses of Valsalva, using saline solution as a working fluid. A limited discussion on the turbulence flow field that could be generated by the valve was provided. In this continuation of that study, therefore, a dynamic PIV study was conducted to analyze the influence of the heart valve design on the aortic flow field, and particularly on the turbulent profile. This study also aimed to determine the influence of the viscosity of the testing fluid. Three bileaflet prostheses-the St. Jude Medical (SJM), the On-X, and the MIRA valves-were tested under pulsatile flow conditions. Flow through the central orifice of the SJM valve was slower than that through the newer designs. The newer designs tend to show strong flow through all orifices. The On-X valve generates simple jet-type flow while the MIRA valve with circumferentially curved leaflets generates a strong but three-dimensionally diffuse flow, resulting in a more complex flow field downstream of the aortic valve with higher turbulence. A 180° orientation that is more popular clinically seems to provide a less diffuse flow than a 90° orientation. The effect of increasing the viscosity was found to be an increase in the flow velocity through the central orifice and a more organized flow field for all of the valves tested.
New dynamic particle image velocimetry (PIV) technology was applied to the study of the flow field associated with prosthetic heart valves. Four bileaflet prostheses, the St. Jude Medical (SJM) valve, the On-X valve with straight leaflets, the Jyros (JR) valve, and the Edwards MIRA (MIRA) valve with curved leaflets, were tested in the mitral position under pulsatile flow conditions to find the effect of the leaflet shape and overall valve design on the flow field, particularly in terms of the turbulent stress distribution, which may influence hemolysis, platelet activation, and thrombus formation. Comparison of the time-resolved flow fields associated with the opening, accelerating, peak, and closing phases of the diastolic flow revealed the effects of the leaflet shape and overall valve design on the flow field. Anatomically and antianatomically oriented bileaflet valves were also compared in the mitral position to study the effects of the orientation on the downstream flow field. The experimental program used a dynamic PIV system utilizing a high-speed, high-resolution video camera to map the true time-resolved velocity field inside the simulated ventricle. Based on the experimental data, the following general conclusions can be made. High-resolution dynamic PIV can capture true chronological changes in the velocity and turbulence fields. In the vertical measuring plane that passes the centers of both the aortic and mitral valves (A-A section), bileaflet valves show clear and simple circulatory flow patterns when the valve is installed in the antianatomical orientation. The SJM, the On-X, and the MIRA valves maintain a relatively high velocity through the central orifice. The curved leaflets of the JR valve generate higher velocities with a divergent flow during the accelerating and peak flow phases when the valve is installed in the anatomical orientation. In the velocity field directly below the mitral valve and normal to the previous measuring plane (B-B section), where characteristic differences in valve design on the three-dimensional flow should be visible, the symmetrical divergent nature of the flow generated by the two inclined half-disks installed in the antianatomical orientation was evident. The SJM valve, with a central downward flow near the valve, is contrasted with the JR valve, which has a peripherally strong downward circulation with higher turbulent stresses. The On-X valve has a strong central downward flow attributable to its large opening angle and flared inlet shape. The MIRA valve also has a relatively strong downward central flow. The MIRA valve, however, diverts the flow three-dimensionally due to its peripherally curved leaflets.
Antianatomically installed Jyros (JR) and ATS valves were compared with the St. Jude Medical (SJM) valve in the mitral position to study the effects of valve design on the downstream flow field and associated closing sounds using a particle image velocimetry (PIV) method utilizing a high-speed video flow visualization technique to map the velocity field and sound measurement to confirm claims by the manufacturer. Based on the experimental data, the following general conclusions can be made: in the velocity field directly below the mitral valve, where distinct characteristic differences in valve design can be seen, symmetrical twin circulations were observed because of the divergent nature of the flow generated by the two inclined half-disks installed in the antianatomical orientation; the SJM valve, which produced central downward circulation, is contrasted to the two other valves, which produced peripheral downward circulation. These differences may play an important role in the closing behavior of the valve leaflets, thus affecting the generation of the valve closing sound.
The paper studies in detail the time history of formation, evolution, and instability of the vortex ring, associated with a family of spheres in the Reynolds number range of 30–2000 and with a blockage ratio of 3–30 percent. The flow visualization results are obtained using the classical dye injection procedure. Simultaneous measurements of pressure distribution on the surface of the sphere help establish correlation between the onset of instability of the vortex ring and the surface loading. The results suggest that the influence of the Reynolds number on the surface pressure distribution is primarily confined to the range Rn < 1000. However, for the model with the highest blockage ratio of 30.6 percent, the pressure continues to show Reynolds number dependency for Rn as high as 2300. In general, effect of the Reynolds number is to increase the minimum as well as the wake pressures. On the other hand, the effect of an increase in the blockage ratio is just the opposite. The wall confinement tends to increase the drag coefficient, however, the classical dependence of skin friction on the Reynolds number Cd,f ∝ R−1/2, is maintained. The paper also presents useful information concerning location of the separating shear layers as affected by the Reynolds number and blockage. For comparison, available analytical and experimental results by other investigators are also included. Results show that for a given blockage, separation points may move upstream by as much as 20 deg over a Reynolds number range of 100–600. In general, for a given Reynolds number, the wall confinement tends to move the separation position downstream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.