This study tests the hypothesis that an ultrasound generated dynamic mechanical signal can attenuate bone loss in an estrogen deficient model of osteopenia. Eighty-four, sixteen week old Sprague-Dawley rats were divided into six groups: baseline control, age-matched control, ovariectomy (OVX) OVX control, OVX + 5 mW/cm 2 ultrasound (US), OVX + 30 mW/cm 2 US and OVX + 100 mW/cm 2 US. Low intensity pulsed ultrasound (LIPUS) was delivered transdermally at the L4/L5 vertebrae, using gelcoupled plane wave US transducers. The signal, characterized by 200μs pulses of 1.5 MHz sine waves repeating at 1 kHz with spatial-averaged temporal-averaged (SATA) intensities of 5, 30 or 100mW/cm 2 , was applied 20 min/day, 5 days/ week for 4 weeks. OVX treatment reduced bone volume fraction 40% and compromised microstructure at 4 weeks. LIPUS treatment, however, significantly increased BV/TV 33% compared to OVX controls for the 100mW/cm 2 treated group. SMI, and Tb.N showed significant improvements compared with OVX for the 100mW/cm 2 treated group and Tb.Th was significantly improved in the 30 and 100mW/cm 2 treated groups. Improvements in bone's microstructural characteristics with 100mW/cm 2 US treatment translated into improved load bearing characteristics, including a significant, 42% increase in apparent level Elastic Modulus compared to OVX controls. Significant improvement of trabecular mechanical strength is also observed in the treated animals, e.g., principal compressive stress (represent bone's ability to resist loads) was significantly higher compared to OVX controls. Histomorphometric analysis also showed that treatment with 100mW/cm 2 US resulted in a 76% improvement in MS/BS. In addition, measures of bone quantity and quality at the femoral metaphysis suggest that LIPUS is site specific. This study indicates that ultrasound, delivered at specific intensities, has beneficial effects on intact bone and may represent a novel intervention for bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.