Nanostructured forms of stoichiometric In 2 O 3 are proving to be efficacious catalysts for the gas-phase hydrogenation of CO 2. These conversions can be facilitated using either heat or light; however, until now, the limited optical absorption intensity evidenced by the pale-yellow color of In 2 O 3 has prevented the use of both together. To take advantage of the heat and light content of solar energy, it would be advantageous to make indium oxide black. Herein, we present a synthetic route to tune the color of In 2 O 3 to pitch black by controlling its degree of non-stoichiometry. Black indium oxide comprises amorphous non-stoichiometric domains of In 2 O 3-x on a core of crystalline stoichiometric In 2 O 3 , and has 100% selectivity towards the hydrogenation of CO 2 to CO with a turnover frequency of 2.44 s −1 .
The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H2 and CO2 molecules and enable efficient gas-phase CO2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step solvothermal synthesis is developed that enables isomorphic replacement of Lewis acidic site In3+ ions in In2O3 by single-site Bi3+ ions, thereby enhancing the propensity to activate CO2 molecules. The so-formed BixIn2-xO3 materials prove to be three orders of magnitude more photoactive for the reverse water gas shift reaction than In2O3 itself, while also exhibiting notable photoactivity towards methanol production. The increased solar absorption efficiency and efficient charge-separation and transfer of BixIn2-xO3 also contribute to the improved photocatalytic performance. These traits exemplify the opportunities that exist for atom-scale engineering in heterogeneous CO2 photocatalysis, another step towards the vision of the solar CO2 refinery.
Titanium dioxide is the only known material that can enable gas-phase CO
2
photocatalysis in its anatase and rutile polymorphic forms. Materials engineering of polymorphism provides a useful strategy for optimizing the performance metrics of a photocatalyst. In this paper, it is shown that the less well known rhombohedral polymorph of indium sesquioxide, like its well-documented cubic polymorph, is a CO
2
hydrogenation photocatalyst for the production of CH
3
OH and CO. Significantly, the rhombohedral polymorph exhibits higher activity, superior stability and improved selectivity towards CH
3
OH over CO. These gains in catalyst performance originate in the enhanced acidity and basicity of surface frustrated Lewis pairs in the rhombohedral form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.