Individuals that forgo their own reproduction in animal societies represent an evolutionary paradox because it is not immediately apparent how natural selection can preserve the genes that underlie non-breeding strategies. Cooperative breeding theory provides a solution to the paradox: non-breeders benefit by helping relatives and/or inheriting breeding positions; non-breeders do not disperse to breed elsewhere because of ecological constraints. However, the question of why non-breeders do not contest to breed within their group has rarely been addressed. Here, we use a wild population of clownfish (Amphiprion percula), where non-breeders wait peacefully for years to inherit breeding positions, to show non-breeders will disperse when ecological constraints (risk of mortality during dispersal) are experimentally weakened. In addition, we show non-breeders will contest when social constraints (risk of eviction during contest) are experimentally relaxed. Our results show it is the combination of ecological and social constraints that promote the evolution of non-breeding strategies. The findings highlight parallels between, and potential for fruitful exchange between, cooperative breeding theory and economic bargaining theory: individuals will forgo their own reproduction and wait peacefully to inherit breeding positions (engage in cooperative options) when there are harsh ecological constraints (poor outside options) and harsh social constraints (poor inside options).
In social groups, high reproductive skew is predicted to arise when the reproductive output of a group is limited, and dominant individuals can suppress subordinate reproductive efforts. Reproductive suppression is often assumed to occur via overt aggression or the threat of eviction. It is unclear, however, whether the threat of eviction alone is sufficient to induce reproductive restraint by subordinates. Here, we test two assumptions of the restraint model of reproductive skew by investigating whether resource limitation generates reproductive competition and whether the threat of eviction leads to reproductive restraint in the clown anemonefish Amphiprion percula. First, we use a feeding experiment to test whether reproduction is resource limited, which would create an incentive for the dominant pair to suppress subordinate reproduction. We show that the number of eggs laid increased in the population over the study period, but the per cent increase in fed groups was more than twice that in unfed groups (205% and 78%, respectively). Second, we use an eviction experiment to test whether the dominant pair evicts mature subordinates, which would create an incentive for the subordinates to forgo reproduction. We show that mature subordinates are seven times more likely to be evicted than immature subordinates of the same size. In summary, we provide experimental support for the assumptions of the restraint model by showing that resource limitation creates reproductive competition and a credible threat of eviction helps explain why subordinates forego reproduction. Transactional models of reproductive skew may apply well to this and other simple systems.
Plasticity, the capacity of individuals to respond to changing environments by modifying traits, may be critically important for population persistence by allowing for adaptive responses on shorter timescales than genetic change. Here, we use the clown anemonefish Amphiprion percula, whose access to resources is constrained by their anemones, to test the role of plasticity in generating variation in reproductive success among groups. We surveyed a wild clownfish population and found positive correlations between anemone area, fish size, reproduction and parental care. We used structural equation modeling to test the hypothesis that these correlations emanate from variation in anemone area and found support for a pathway linking anemone area to female investment, female investment to male investment and male investment to embryo survival. Next, we experimentally tested whether plasticity in response to resource availability can result in variation in parental traits using a feeding manipulation and found substantial plasticity in reproduction and parental care in response to changes in the availability of food resources. The results of this study reveal the role of plasticity in response to local resource availability in generating variation among individuals in reproductive strategies, linking studies of behavior and demography in this model species, and ultimately contributing to our ability to predict how populations might cope with environmental changes.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post-metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post-metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused postmetamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval-stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry-over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.