The phylogeny of Hedychium J. Koenig was estimated using sequence data of internal transcribed spacer regions 1 and 2 (ITS1, ITS2) and 5.8S nuclear ribosomal DNA. Sequences were determined for 29 taxa, one interspecific hybrid of Hedychium and one species in each of 16 other genera of Zingiberaceae representing tribes Hedychieae, Globbeae, Zingibereae and Alpinieae. Cladistic analysis of these data strongly supports the monophyly of Hedychium, but relationships to other genera are poorly supported. Within Hedychium, four major clades are moderately supported. These clades are also distinguishable on the basis of number of flowers per bract and distribution. Stahlianthus, Curcuma, and Hitchenia also form a strongly supported clade. Based on this limited sample, the currently defined tribes of Zingiberoideae are not monophyletic. The Asiatic genera form a monophyletic group within this broadly defined Hedychieae. The taxonomy and biogeography of Hedychium are reviewed.
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.
We describe the characterization of several transcripts of the Drosophila serine/threonine protein kinase 61 (Dstpk61) gene. Dstpk61 produces at least four transcripts, including a 3.0-kb testis-specific transcript, a 4.5-kb female-specific carcass transcript, a 3.5-kb ovary-specific transcript, and a 4.7-kb non-sex-specific transcript. Two cDNAs, a 4.5-kb cDNA (cDNA B ) and a 3.0-kb cDNA (cDNA A ), likely to correspond to either the non-specific or the female-specific carcass and the testis-specific transcript, respectively, were fully sequenced and found to encode a novel OPA-repeat-containing serine/threonine-specific protein kinase. cDNA A and cDNA B both contain the entire ORF that encodes this predicted protein, but differ in the untranslated regions. The cDNAs contain translational control elements which are found in transcripts under male germline-specific translational control, and doublesexlike 13-nucleotide repeat elements, which are required for transformer/transformer-2-mediated splicing of the female doublesex transcript. The complex tissue and sex-specific transcripts, differing in the untranslated regions which are likely to be crucial in translational control, suggest that this kinase may have both general and sex-specific functions. The protein is homologous to human 3-phosphoinositide dependent protein kinase, which is involved in transduction of insulin signalling.
Genomic surveillance is an essential part of effective disease control, enabling identification of emerging and expanding strains and monitoring of subsequent interventions. Whole-genome sequencing was used to analyze the genomic diversity of all Neisseria meningitidis isolates submitted to the New Zealand Meningococcal Reference Laboratory during 2013–2018. Of the 347 isolates submitted for whole-genome sequencing, we identified 68 sequence types belonging to 18 clonal complexes (CC). The predominant CC was CC41/44; next in predominance was CC11. Comparison of the 45 New Zealand group W CC11 isolates with worldwide representatives of group W CC11 isolates revealed that the original UK strain, the 2013 UK strain, and a distinctive variant (the 2015 strain) were causing invasive group W meningococcal disease in New Zealand. The 2015 strain also demonstrated increased resistance to penicillin and has been circulating in Canada and several countries in Europe, highlighting that close monitoring is needed to prevent future outbreaks around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.