Neural tissue engineering and three-dimensional in vitro tissue modeling require the development of biomaterials that take into account the specified requirements of human neural cells and tissue. In this study, an alternative method of producing biomimetic hydrogels based on gellan gum (GG) was developed by replacing traditional crosslinking methods with the bioamines spermidine and spermine. These bioamines were proven to function as crosslinkers for GG hydrogel at +37 °C, allowing for the encapsulation of human neurons. We studied the mechanical and rheological properties of the formed hydrogels, which showed biomimicking properties comparable to naïve rabbit brain tissue under physiologically relevant stress and strain. Human pluripotent stem cell-derived neuronal cells demonstrated good cytocompatibility in the GG-based hydrogels. Moreover, functionalization of GG hydrogels with laminin resulted in cell type-specific behavior: neuronal cell maturation and neurite migration.
The future of tissue engineering applications for neuronal cells will require a supportive 3D matrix. This particular matrix should be soft, elastic and supportive for cell growth. In this study, we characterized the suitability of a 3D synthetic hydrogel matrix, PuraMatrix™, as a growth platform for human embryonic stem cell (hESC)-derived neural cells. The viability of the cells grown on top of, inside and under the hydrogel was monitored. The maturation and electrical activity of the neuronal networks inside the hydrogel were further characterized. We showed that cells stayed viable on the top of the PuraMatrix™ surface and growth of the neural cells and neural processes was good. Further, hESC-derived neurons, astrocytes and oligodendrocytes all grew, matured and migrated when cultured inside the hydrogel. Importantly, neuronal cells were able to form electrically active connections that were verified using microelectrode array. Thus, PuraMatrix is a good supportive growth matrix for human neural cells and may serve as a matrix for neuronal scaffolds in neural tissue engineering.
Regenerative medicine, especially cell therapy combined with a supportive biomaterial scaffold, is considered to be a potential treatment for various deficits in humans. Here, we have produced and investigated the detailed properties of injectable hydrazone crosslinked hyaluronanpolyvinyl alcohol (HA-PVA) and alginate-polyvinyl alcohol (AL-PVA) hydrogels to be used as a supportive biomaterial for 3D neural cell cultures. To the best of our knowledge, this is the first time the polymerization and properties of hydrazone crosslinked AL-PVA hydrogel have been reported. The effect of the degree of substitution and molecular weight of the polymer components as well as the polymer concentration of the hydrogel on the swelling, degradation and mechanical properties of the hydrogels is reported. Furthermore, we studied the effect of the above parameters on the growth of human pluripotent stem cell-derived neuronal cells. The most neural cell supportive HA-PVA hydrogel was composed of high molecular weight HA component with brain-mimicking mechanical properties and decreased polymer concentration. AL-PVA hydrogel, with stiffness quite similar to brain tissue, was also shown to be similarly supportive. Neuronal spreading and 3D network formation was enhanced inside the softest hydrogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.