Objective:Harmonized data quality (DQ) assessment terms, methods, and reporting practices can establish a common understanding of the strengths and limitations of electronic health record (EHR) data for operational analytics, quality improvement, and research. Existing published DQ terms were harmonized to a comprehensive unified terminology with definitions and examples and organized into a conceptual framework to support a common approach to defining whether EHR data is ‘fit’ for specific uses.Materials and Methods:DQ publications, informatics and analytics experts, managers of established DQ programs, and operational manuals from several mature EHR-based research networks were reviewed to identify potential DQ terms and categories. Two face-to-face stakeholder meetings were used to vet an initial set of DQ terms and definitions that were grouped into an overall conceptual framework. Feedback received from data producers and users was used to construct a draft set of harmonized DQ terms and categories. Multiple rounds of iterative refinement resulted in a set of terms and organizing framework consisting of DQ categories, subcategories, terms, definitions, and examples. The harmonized terminology and logical framework’s inclusiveness was evaluated against ten published DQ terminologies.Results:Existing DQ terms were harmonized and organized into a framework by defining three DQ categories: (1) Conformance (2) Completeness and (3) Plausibility and two DQ assessment contexts: (1) Verification and (2) Validation. Conformance and Plausibility categories were further divided into subcategories. Each category and subcategory was defined with respect to whether the data may be verified with organizational data, or validated against an accepted gold standard, depending on proposed context and uses. The coverage of the harmonized DQ terminology was validated by successfully aligning to multiple published DQ terminologies.Discussion:Existing DQ concepts, community input, and expert review informed the development of a distinct set of terms, organized into categories and subcategories. The resulting DQ terms successfully encompassed a wide range of disparate DQ terminologies. Operational definitions were developed to provide guidance for implementing DQ assessment procedures. The resulting structure is an inclusive DQ framework for standardizing DQ assessment and reporting. While our analysis focused on the DQ issues often found in EHR data, the new terminology may be applicable to a wide range of electronic health data such as administrative, research, and patient-reported data.Conclusion:A consistent, common DQ terminology, organized into a logical framework, is an initial step in enabling data owners and users, patients, and policy makers to evaluate and communicate data quality findings in a well-defined manner with a shared vocabulary. Future work will leverage the framework and terminology to develop reusable data quality assessment and reporting methods.
Since late 2019, the novel coronavirus SARS-CoV-2 has introduced a wide array of health challenges globally. In addition to a complex acute presentation that can affect multiple organ systems, increasing evidence points to long-term sequelae being common and impactful. As the worldwide scientific community forges ahead with efforts to characterize a wide range of outcomes associated with SARS-CoV-2 infection, the proliferation of available data has made it clear that formal definitions are needed in order to design robust and consistent studies of Long COVID that consistently capture variation in long-term outcomes. In the present study, we investigate the definitions used in the literature published to date and compare them against data available from electronic health records and patient-reported information collected via surveys. Long COVID holds the potential to produce a second public health crisis on the heels of the pandemic. Proactive efforts to identify the characteristics of this heterogeneous condition are imperative for a rigorous scientific effort to investigate and mitigate this threat.
Highlights d KG-COVID-19 is a framework for producing customized COVID-19 knowledge graphs d Our knowledge graph and framework is free, open-source, and FAIR d KG-COVID-19 integrates a wide range of COVID-19-related data in an ontology-aware way d Our KG has been applied to use cases including ML tasks, hypothesis-based querying
Rather than direct evidence supporting the Hispanic Paradox, we found a more nuanced relationship for generational status in this sample.
Background Studies have shown associations between heavy alcohol use and white matter alterations in adolescence. Youth involved with the juvenile justice system engage in high levels of risk behavior generally and alcohol use in particular as compared to their non-justice-involved peers. Objectives This study explored white matter integrity among justice-involved adolescents. Analyses examined fractional anisotropy (FA) and mean diffusivity (MD) between adolescents with low and high levels of problematic alcohol use as assessed by the Alcohol Use Disorders Identification Test (AUDIT). Methods Participants (N = 125; 80% male; 14–18 years) completed measures assessing psychological status and substance use followed by diffusion tensor imaging (DTI). DTI data for low (n = 51) and high AUDIT (n = 74) adolescents were subjected to cluster-based group comparisons on skeletonized FA and MD data. Results Whole-brain analyses revealed significantly lower FA in clusters in the right and left posterior corona radiata (PCR) and right superior longitudinal fasciculus (SLF) in the high AUDIT group, as well as one cluster in the right anterior corona radiata that showed higher FA in the high AUDIT group. No differences in MD were identified. Exploratory analyses correlated cluster FA with measures of additional risk factors. FA in the right SLF and left PCR was negatively associated with impulsivity. Conclusion Justice-involved adolescents with alcohol use problems generally showed poorer FA than their low problematic alcohol use peers. Future research should aim to better understand the nature of the relationship between white matter development and alcohol use specifically as well as risk behavior more generally.
Electronic Health Record (EHR) systems typically define laboratory test results using the Laboratory Observation Identifier Names and Codes (LOINC) and can transmit them using Fast Healthcare Interoperability Resource (FHIR) standards. LOINC has not yet been semantically integrated with computational resources for phenotype analysis. Here, we provide a method for mapping LOINC-encoded laboratory test results transmitted in FHIR standards to Human Phenotype Ontology (HPO) terms. We annotated the medical implications of 2923 commonly used laboratory tests with HPO terms. Using these annotations, our software assesses laboratory test results and converts each result into an HPO term. We validated our approach with EHR data from 15,681 patients with respiratory complaints and identified known biomarkers for asthma. Finally, we provide a freely available SMART on FHIR application that can be used within EHR systems. Our approach allows readily available laboratory tests in EHR to be reused for deep phenotyping and exploits the hierarchical structure of HPO to integrate distinct tests that have comparable medical interpretations for association studies.
The role of extracellular vesicles (EVs), specifically exosomes, in intercellular communication likely plays a key role in placental orchestration of pregnancy and maternal immune sensing of the fetus. While murine models are powerful tools to study pregnancy and maternal-fetal immune interactions, in contrast to human placental exosomes, the content of murine placental and pregnancy exosomes remains largely understudied. Using a recently developed in vitro culture technique, murine trophoblast stem cells derived from B6 mice were differentiated into syncytial-like cells. EVs from the conditioned media, as well as from pregnant and non-pregnant sera, were enriched for exosomes. The RNA composition of these murine trophoblast-derived and pregnancy-associated exosome-enriched-EVs (ExoE-EVs) was determined using RNA-sequencing analysis and expression levels confirmed by qRT-PCR. Differentially abundant miRNAs were detected in syncytial differentiated ExoE-EVs, particularly from the X chromosome cluster (mmu-miR-322-3p, mmu-miR-322-5p, mmu-miR-503-5p, mmu-miR-542-3p, and mmu-miR-450a-5p). These were confirmed to be increased in pregnant mouse sera ExoE-EVs by qRT-PCR analysis. Interestingly, fifteen miRNAs were only present within the pregnancy-derived ExoE-EVs compared to non-pregnant controls. Mmu-miR-292-3p and mmu-miR-183-5p were noted to be some of the most abundant miRNAs in syncytial ExoE-EVs and were also present at higher levels in pregnant versus non-pregnant sera ExoE-EVs. The bioinformatics tool, MultiMir, was employed to query publicly available databases of predicted miRNA-target interactions. This analysis reveals that the X-chromosome miRNAs are predicted to target ubiquitin-mediated proteolysis and intracellular signaling pathways. Knowing the cargo of placental and pregnancy-specific ExoE-EVs as well as the predicted biological targets informs studies using murine models to examine not only maternal-fetal immune interactions but also the physiologic consequences of placental-maternal communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.