Abstract. An increasing number of applications in verification and security rely on or could benefit from automatic solvers that can check the satisfiability of constraints over a rich set of data types that includes character strings. Unfortunately, most string solvers today are standalone tools that can reason only about (some fragment) of the theory of strings and regular expressions, sometimes with strong restrictions on the expressiveness of their input language. These solvers are based on reductions to satisfiability problems over other data types, such as bit vectors, or to automata decision problems. We present a set of algebraic techniques for solving constraints over the theory of unbounded strings natively, without reduction to other problems. These techniques can be used to integrate string reasoning into general, multi-theory SMT solvers based on the DPLL(T ) architecture. We have implemented them in our SMT solver CVC4 to expand its already large set of built-in theories to a theory of strings with concatenation, length, and membership in regular languages. Our initial experimental results show that, in addition, over pure string problems, CVC4 is highly competitive with specialized string solvers with a comparable input language.
Abstract. We prove that the quantifier-free fragment of the theory of character strings with regular language membership constraints and linear integer constraints over string lengths is decidable. We do that by describing a sound, complete and terminating tableaux calculus for that fragment which uses as oracles a decision procedure for linear integer arithmetic and a number of computable functions over regular expressions. A distinguishing feature of this calculus is that it provides a completely algebraic method for solving membership constraints which can be easily integrated into multi-theory SMT solvers. Another is that it can be used to generate symbolic solutions for such constraints, that is, solved forms that provide simple and compact representations of entire sets of complete solutions. The calculus is part of a larger one providing the theoretical foundations of a high performance theory solver for string constraints implemented in the SMT solver CVC4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.