BackgroundCholera has been endemic in Douala, since 1971 when it was first recorded in Cameroon. Outbreaks have often started in slum areas of the city including New Bell. Despite the devastating nature of outbreaks, always resulting in high mortality and morbidity, a paucity of information exists on the reservoirs of the causative agent, V. cholerae, and factors maintaining its persistence. This has complicated disease prevention, resulting in frequent outbreaks of cholera. We investigated water sources in New Bell for contamination with V. cholerae O1 with pathogenic potential, to highlight their role in disease transmission. Antibiotic susceptibility pattern of isolates and the environmental factors maintaining its persistence were investigated.MethodWater samples from various sources (taps, dug wells, streams) were analyzed for contamination with V. cholerae O1 using standard methods. Antibiotic susceptibility was determined by disc diffusion method. Pathogenic potential of isolates was determined by analyzing for genes for cholera toxin (ctx), toxin co-regulated pilus (tcpA), and zonula occludens toxin (zot) by PCR. Physico-chemical characteristics of water (pH, temperature and salinity) were investigated using standard methods. The Spearman’s Rank correlation was used to analyze the relationship between physico-chemical factors and the occurrence of V. cholerae O1. Differences were considered significant at P≤0.05.ResultsTwenty-five V. cholerae O1 strains were isolated from stream and well samples in both dry and rainy seasons. Twenty-three (92%) isolates were multidrug resistant. All isolates had genes for at least one virulence factor. Cholera toxin gene was detected in 7 isolates. Of the 15 isolates positive for tcpA gene, two had Classical type tcpA while 13 had tcpA El Tor. All tcpA Classical positive isolates were positive for ctx gene. Isolates were grouped into nine genotypes based on the genes analyzed. pH and salinity significantly correlated with isolation of V. cholerae O1.ConclusionMultidrug resistant Vibrio cholerae O1 with pathogenic potential is present in some wells and streams in study area. pH and salinity are among the factors maintaining the persistence of the organism. Findings indicate an urgent need for potable water supply in study area and in addition, regular disinfection of water from contaminated sources to prevent outbreak of cholera.
Introduction: During the cholera outbreak from 2010 to 2011 in Cameroon, 33,192 cases with 1,440 deaths (case fatality ratio 4.34%) were reported to the World Health Organization. Of these, the South West Region reported 3,120 clinical cases. This region is in the Equatorial Monsoon climatic subzone of Cameroon, close to the coast, raising questions as to whether cases were linked with development of environmental reservoirs. Methods: In an investigation conducted by the Laboratory for Emerging Infectious Diseases, University of Buea, toxigenic V. cholerae O1 were isolated from diarrheal stool samples from 18 patients, with ages ranging from <3 to 70 years. Coordinates for clinical centers at which cases were identified were obtained using a handheld GPS, and were mapped using ArcGIS. Antibiotic susceptibility testing was performed using the Kirby ‘Bauer agar disc diffusion method. The full genomes of these strains were sequenced with the Illumina MiSeq platform. De novo assembly of cholera genomes and multiple sequence alignment were carried out using the bioinformatics pipeline developed in the Emerging Pathogens Institute laboratory at the University of Florida. Results/Discussion: Genetic comparisons showed that isolates were closely related, with pairwise p-distances ranging from 2.25 to 14.52 10-5 nt substitutions per site, and no statistically significant correlation between the pairwise genetic distances and the geographic distances among sampling locations. Indeed, the phylogeny of the Cameroonian strains displays the typical star-like topology and intermixing of strains from different locations that are characteristic of an exponential outbreak localized around a relatively restricted area with occasional spillover to other parts of the country, likely mediated by direct human contact and human movement. Findings highlight the utility of whole genome sequencing and phylogenetic analysis in understanding transmission patterns at the local level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.