Traditional in vitro human liver cell culture models lose key hepatic functions such as metabolic activity during short-term culture. Advanced three-dimensional (3D) liver coculture platforms offer the potential for extended hepatocyte functionality and allow for the study of more complex biologic interactions, which can improve and refine human drug safety evaluations. Here, we use a perfusion flow 3D microreactor platform for the coculture of cryopreserved primary human hepatocytes and Kupffer cells to study the regulation of cytochrome P450 3A4 isoform (CYP3A4) activity by chronic interleukin 6 (IL-6)-mediated inflammation over 2 weeks. Hepatocyte cultures remained stable over 2 weeks, with consistent albumin production and basal IL-6 levels. Direct IL-6 stimulation that mimics an inflammatory state induced a dose-dependent suppression of CYP3A4 activity, an increase in C-reactive protein (CRP) secretion, and a decrease in shed soluble interleukin-6 receptor (IL-6R) levels, indicating expected hepatic IL-6 bioactivity. Tocilizumab, an anti-IL-6R monoclonal antibody used to treat rheumatoid arthritis, has been demonstrated clinically to impact small molecule drug pharmacokinetics by modulating cytochrome P450 enzyme activities, an effect not observed in traditional hepatic cultures. We have now recapitulated the clinical observation in a 3D bioreactor system. Tocilizumab was shown to desuppress CYP3A4 activity while reducing the CRP concentration after 72 hours in the continued presence of IL-6. This change in CYP3A4 activity decreased the half-life and area under the curve up to the last measurable concentration (AUC last ) of the small molecule CYP3A4 substrate simvastatin hydroxy acid, measured before and after tocilizumab treatment. We conclude that next-generation in vitro liver culture platforms are well suited for these types of long-term treatment studies and show promise for improved drug safety assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.