Cocaine abuse is a major medical and public health concern in the United States, with approximately 2.1 million people dependent on cocaine. Pharmacological approaches to the treatment of cocaine addiction have thus far been disappointing, and new therapies are urgently needed. This paper describes an immunological approach to cocaine addiction. Antibody therapy for neutralization of abused drugs has been described previously, including a recent paper demonstrating the induction of anti-cocaine antibodies. However, both the rapidity of entry of cocaine into the brain and the high doses of cocaine frequently encountered have created challenges for an antibody-based therapy. Here we demonstrate that antibodies are efficacious in an animal model of addiction. Intravenous cocaine self-administration in rats was inhibited by passive transfer of an anti-cocaine monoclonal antibody. To actively induce anti-cocaine antibodies, a cocaine vaccine was developed that generated a high-titer, long-lasting antibody response in mice. Immunized mice displayed a significant change in cocaine pharmacokinetics, with decreased levels of cocaine measured in the brain of immunized mice only 30 seconds after intravenous (i.v.) administration of cocaine. These data establish the feasibility of a therapeutic cocaine vaccine for the treatment of cocaine addiction.
T ceUls control the maijority of antigen-specific immune responses. Therefore, influencing the activation of the
The ability of immunodominant peptides derived from several antigen systems to compete with each other for T cell activation was studied. Only peptides restricted by a given transplantation antigen are mutually competitive. There is a correlation between haplotype restriction, ability to bind to the appropriate transplantation antigen, and ability to inhibit activation of other T cells restricted by the same transplantation antigen. An exception was noted in that a peptide derived from an antigen, bacteriophage lambda cI repressor, binds to the I-Ed molecule in a specific way, yet is not I-Ed-restricted. Comparison of the sequence of the repressor peptide with that of other peptides able to bind to (and be restricted by) I-Ed and a polymorphic region of the I-Ed molecule itself revealed a significant degree of homology. Thus, peptides restricted by a given class II molecule appear to be homologous to a portion of the class II molecule itself. The repressor-derived peptide is identical at several polymorphic residues at this site, and this may account for the failure of I-Ed to act as a restriction element. Comparison of antigenic peptide sequences with transplantation antigen sequences suggests a model that provides a basis for explaining self, nonself discrimination as well as alloreactivity.
T lymphocytes require a foreign antigen to be presented on a cell surface in association with a self-transplantation antigen before they can recognize it effectively. This phenomenon is known as major histocompatibility complex (MHC) restriction. It is not clear how an incalculably large number of foreign proteins form unique complexes with a very limited number of MHC molecules. We studied the recognition properties of T cells specific for a peptide derived from bacteriophage lambda cI protein. Analogues of this peptide, as well as peptides derived from other unrelated antigens which can be presented in the context of the same MHC molecule, can competitively inhibit activation of these T cells by the cI peptide. Furthermore, these unrelated antigens can stimulate cI-specific T cells if certain specific amino-acid residues are replaced. Here we suggest a model in which all antigens give rise to peptides that can bind to the same site on the MHC molecule. T-cell recognition of this site (which is presumed to be polymorphic) with or without antigen bound can explain self-selection in the thymus and MHC restriction.
The major histocompatibility complex (MHC) genes are polymorphic in mouse and man. The products of these genes are receptors for peptides, which while bound, are displayed to T lymphocytes. When bound peptides from antigens are recognized by T lymphocytes, an immune response is initiated against the antigens. This study assessed the relation of the polymorphic MHC molecules to their peptide specificity. The results indicate that although an individual of the species has a limited ability to recognize antigens, the species as a whole has broad reactivity. This rationalizes the extreme polymorphism observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.