Summary Prior to Deep Sea Drilling Project (DSDP) Leg 93 (1983), drill data along the continental rise of the Atlantic margin of the United States were quite limited compared to those of the adjacent continental shelf and the deeper, more seaward expanses of the North American Basin. Interpretations of the geologic history and of processes that controlled sedimentation along the rise were strongly dependent on studies of seismic reflection profiles. DSDP Leg 93 drilled deep holes on both the lower and upper rise, allowing correlation with commercial wells on land and offshore (as well as with subsequent DSDP Leg 95 holes along the ‘New Jersey Transect’) and providing the first down dip suite of drill holes across a passive continental margin from the coastal plain to the abyssal plain. Site 603 on the lower rise 270 miles east of Cape Hatteras was cored nearly continuously over 1585 m to Berriasian pelagic limestones. It intersected an extensive Lower Cretaceous deep-sea fan complex which provides new information on the petroleum potential of the rise. Hauterivian to early Aptian in age, this 208 m interval of interbedded limestones, sand and blackshale turbidites calls into question the existence of any post Valanginian reefs along the Baltimore Canyon Trough. Less extensive terrigenous turbidites were encountered as far up in the section as the Cretaceous-Tertiary (K-T) boundary. The K-T boundary is marked by a current-laminated sand rich in dark, 1 mm diameter spherules which may denote an extraterrestrial impact event. DSDP Sites 604 and 605 on the upper rise, the first along the ‘New Jersey Transect’, are located some 100 miles south-east of Atlantic City, New Jersey. Hole 605, drilled 816.7 m down to mid-Maestrichtian limestones, penetrated a near complete Cretaceous-Tertiary boundary section, above which 20 m of lower Palaeocene are separated by a disconformity from an expanded 175 m Palaeocene sequence. Terrigenous silts and glauconite at the K-T boundary and immediately above suggest either significant sea-level change, increased current erosion along the adjacent shelf and slope, increased terrigenous input caused by decreased vegetation, a high energy event (tsunami?), or some combination of these possible factors. Site 604, 3 miles seaward of Site 605, was terminated by unstable hole conditions at 294.5 m within a unit of Miocene glauconitic sands and debris flows. Emplaced largely during the Tortonian (8.2–10.0 Ma; Vail cycle TM3.1), these upper Miocene sediments contain shelf-derived gravels, exotic blocks of Eocene chalk (up to 50 cm across) eroded from the adjacent slope, and clasts of middle and upper Miocene carbonates or silts derived from canyon walls or shallow water strata upslope. Study of closely spaced, high resolution seismic profiles suggests that large-scale regional erosion (canyon cutting), which is related to the debris flows, began during the late middle Miocene. On the lower rise, turbiditic silts and clays began to accumulate rapidly during the middle Miocene. Under the influence of a strengthening Western Boundary Undercurrent, these were deposited as muddy contourites in antidune-like sediment waves which, at site 603, grew rapidly with no appreciable break in sedimentation until at least early Pleistocene times to form the present Lower Continental Rise Hills of the Hatteras Outer Ridge (HOR). The somewhat elevated edge of the Lower Continental Rise Terrace formed as a natural levee behind which the coarser portions of the terrigenous turbidites were ponded to form the terrace. No coarse clastics that bypassed the pond were deposited with the clays of the HOR at this locality. Throughout the study, seismic sequence boundaries of the upper and lower continental rise were calibrated and correlated with continental margin unconformities as well as with deep sea reflection horizons.
Three of the six DSDP Leg 77 sites drilled in the western approaches to the Straits of Florida yielded thick sequences of Cenozoic sediment rich in calcareous nannofossils. Hiatuses are prominent in each of these continuously cored intervals. A prominent upper Oligocene hiatus, observed at each of these three sites, can be correlated to a large-scale "global" regression event. Other disconformable horizons present in the study area cannot be positively related to sealevel fluctuations and may be caused by a number of factors including local tectonic activity. Paleogene sections are generally marked by thick accumulations within the upper Oligocene Sphenolithus ciperoensis Zone and by a pronounced braarudosphaerid-holococcolith bloom recorded in the lower Oligocene and upper Eocene. This bloom is particularly well developed at Site 540. All samples examined contain abundant nannofossils. Preservation fluctuates throughout the sections from good to poor.
Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, this volume). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon P r. Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P 2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M 2 /Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon A u , coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. S...
Drilling at three DSDP drill sites on the western margin of the Pacific Ocean off the coast of Japan yielded thick sequences of hemipelagic muds and clays generally depleted of calcareous nannofossils. Operations at Sites 582 and 583 recovered dominantly Quaternary sediments. The Pliocene/Pleistocene boundary was reached near the bottom of Hole 582B. At both sites, preserved coccolith populations contained generally few to common nannoliths. The effects of reworking were evident throughout most sections at these two sites. Drilling at Site 584 in the Japan Trench recovered Holocene to Miocene sediments. Populations of nannofossils from this site were generally more depleted than those from the two Nankai Trough sites. Reworking within these sections appears to be much less severe than in samples from the more southern sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.