Pyoverdine (PvdI) is the major siderophore secreted by Pseudomonas aeruginosa PAOI in order to get access to iron. After being loaded with iron in the extracellular medium, PvdI is transported across the bacterial outer membrane by the transporter, FpvAI. We used the spectral properties of PvdI to show that in addition to Fe(3+), this siderophore also chelates, but with lower efficiencies, all the 16 metals used in our screening. Afterwards, FpvAI at the cell surface binds Ag(+), Al(3+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Mn(2+), Ni(2+) or Zn(2+) in complex with PvdI. We used Inductively Coupled Plasma-Atomic Emission Spectrometry to monitor metal uptake in P. aeruginosa: TonB-dependent uptake, in the presence of PvdI, was only efficient for Fe(3+). Cu(2+), Ga(3+), Mn(2+) and Ni(2+) were also transported into the cell but with lower uptake rates. The presence of Al(3+), Cu(2+), Ga(3+), Mn(2+), Ni(2+) and Zn(2+) in the extracellular medium induced PvdI production in P. aeruginosa. All these data allow a better understanding of the behaviour of the PvdI uptake pathway in the presence of metals other than iron: FpvAI at the cell surface has broad metal specificity at the binding stage and it is highly selective for Fe(3+) only during the uptake process.
While diatoms are widely present in terms of diversity and abundance in nature, few species are currently used for biotechnologically applications. Most studies have focussed on intracellularly synthesised eicosapentaenoic acid (EPA), a polyunsaturated fatty acid (PUFA) used for pharmaceutical applications. Applications for other intracellular molecules, such as total lipids for biodiesel, amino acids for cosmetic, antibiotics and antiproliferative agents, are at the early stage of development. In addition, the active principle component must be identified amongst the many compounds of biotechnological interest. Biomass from diatom culture may be applied to: (1). aquaculture diets, due to the lipid- and amino-acid-rich cell contents of these microorganisms, and (2). the treatment of water contaminated by phosphorus and nitrogen in aquaculture effluent, or heavy metal (bioremediation). The most original application of microalgal biomass, and specifically diatoms, is the use of silicon derived from frustules in nanotechnology. The competitiveness of biotechnologically relevant products from diatoms will depend on their cost of production. Apart from EPA, which is less expensive when obtained from Phaeodactylum tricornutum than from cod liver, comparative economic studies of other diatom-derived products as well as optimisation of culture conditions are needed. Extraction of intracellular metabolites should be also optimised to reduce production costs, as has already been shown for EPA. Using cell immobilisation techniques, benthic diatoms can be cultivated more efficiently allowing new, biotechnologically relevant products to be investigated.
Biotechnological applications of diatoms are still in development. Further development at the industrial scale will depend on optimisation of the culture process with the aim of reducing costs. Because of the photoautotrophic status of the majority of diatoms, microalgal cultures suffer from the limitation of light diffusion, which requires the development of suitable photobioreactors. Thus, genetically engineered microalgae that may be cultivated in heterotrophic conditions present a new opportunity. Other limiting factors, such as nutrients (phosphate, nitrogen, silicon), pH, temperature, bioturbation and many more must be taken into account. Most of the time, metabolic stress conditions lead to an overproduction of the products of interest, with a decrease in biomass production as a consequence. Outdoor cultures in open ponds are usually devoted to aquaculture for the feeding of shrimps and bivalve molluscs (commercial production), while closed axenic indoor/outdoor photobioreactors are used for biotechnological compounds of homogeneous composition (still at the laboratory scale). In addition to the optimum culture conditions that have to be taken into account for photobioreactor design, the localisation of produced metabolites (intra- or extracellular) may also be taken into account when choosing the design. Microalgal cell immobilisation may be a suitable technique for application to benthic diatoms, which are usually sensitive to bioturbation and/or metabolites which may be overexpressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.