<span lang="EN-US">In the process of bankruptcy prediction models, a class imbalanced problem has occurred which limits the performance of the models. Most prior research addressed the problem by applying resampling methods such as the synthetic minority oversampling technique (SMOTE). However, resampling methods lead to other issues, e.g., increasing noisy data and training time during the process. To improve the bankruptcy prediction model, we propose cost-sensitive extreme gradient boosting (CS-XGB) to address the class imbalanced problem without requiring any resampling method. The proposed method’s effectiveness is evaluated on six real-world datasets, i.e., the LendingClub, and five Polish companies’ bankruptcy. This research compares the performance of CS-XGB with other ensemble methods, including SMOTE-XGB which applies SMOTE to the training set before the learning process. The experimental results show that i) based on LendingClub, the CS-XGB improves the performance of XGBoost and SMOTE-XGB by more than 50% and 33% on bankruptcy detection rate (BDR) and geometric mean (GM), respectively, and ii) the CS-XGB model outperforms random forest (RF), Bagging, AdaBoost, XGBoost, and SMOTE-XGB in terms of BDR, GM, and the area under a receiver operating characteristic curve (AUC) based on the five Polish datasets. Besides, the CS-XGB model achieves good overall prediction results.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.