<span>The human face can be used as an identification and authentication tool in biometric systems. Face recognition in forensics is a challenging task due to the presence of partial occlusion features like wearing a hat, sunglasses, scarf, and beard. In forensics, criminal identification having partial occlusion features is the most difficult task to perform. In this paper, a combination of the histogram of gradients (HOG) with Euclidean distance is proposed. Deep metric learning is the process of measuring the similarity between the samples using optimal distance metrics for learning tasks. In the proposed system, a deep metric learning technique like HOG is used to generate a 128d real feature vector. Euclidean distance is then applied between the feature vectors and a tolerance threshold is set to decide whether it is a match or mismatch. Experiments are carried out on disguised faces in the wild (DFW) dataset collected from IIIT Delhi which consists of 1000 subjects in which 600 subjects were used for testing and the remaining 400 subjects were used for training purposes. The proposed system provides a recognition accuracy of 89.8% and it outperforms compared with other existing methods.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.