This research aims to compare the classical thin-layer models, stepwise fit regression method (SRG) and artificial neural networks (ANN) in the modelling of drying kinetics of shrimp shell and crab exoskeleton. Thus, drying curves were obtained using a convective dryer (3.0 m/s) at temperatures of 30.45 and 60 o C. The results showed a decreasing tendency for the drying time as the temperature increased for both materials. Drying curves modelling of both materials showed fitted results with R 2 adj>0.998 and MRE<13.128% for some thin-layer models. On the other hand, by SRG a simple model could be obtained as a function of time and temperature, with the greatest accuracy being found in the modelling of experimental data of crab exoskeleton, with MRE<10.149%. Finally, the ANNs were employed successfully in the modelling of drying kinetics, showing high prediction quality with the trained recurrent ANN models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.