Introduction: Forests form a major component of the carbon (C) reserves in the world's ecosystems. However, little is known on how management influences C stocks of woody vegetation, particularly in dry areas. We developed regression models for two dominant tree species to predict C stocks and quantified the potential of community managed forests as C sinks. Methods: Plots were randomly selected from community-managed natural forest, herbivore exclosures, and from communal grazing land. Tree and shrub biomass were estimated using a regression model on the most dominant woody species while herbaceous biomass was determined using destructive sampling.Results: The simplest model, based on only one single predictor variable, showed a good fit to the data for both species (Juniperus procera and Acacia abyssinica). Diameter at breast height (r 2 > 0.95) was a more reliable predictor than height (r 2 > 0.54), crown diameter (r 2 > 0.68) (p < 0.001). The C content of the total biomass for the managed natural forest and the exclosure were estimated as, 58.11 and 22.29 Mg ha −1 , respectively, while that for the grazing land was 7.76 Mg ha −1 , and the mean carbon content between the three land uses were significantly different (p < 0.05). Conclusions: We conclude that forests managed by the community have a high potential for C sequestration and storage and their conservation should be promoted.
Climate change is one of the most serious impediments to agricultural prosperity in Ethiopia, especially where livestock is concerned. In particular, rural farming communities in the drylands of the Afar region are severely exposed to the impacts of climate change, with stark reminders from repeating droughts followed by crop failure and livestock decimation. Locals have a long history of applying adaptation measures to maintain their sustenance. However, a growing literature challenges whether these traditional methods can continue to sustain local livelihoods. This study identifies how pastoral, semi-pastoral, agro-pastoral and mixed-farming communities in Afar perceive and adapt to climate change and whether these practices have brought about any improvement in farm income. A panel data set of five years was gathered using structured questionnaires from a sample of 313 households. Household heads pointed out indicators to identify climate-related stress such as erratic rainfall, drought, temperature change, drying of water sources, prevalence of diseases and lack of human and livestock feed. A fixed effects quantitative model on the panel data was estimated to verify the effect of adaptation strategies on income of household heads. We found that the main adaptation strategies that significantly influenced household income levels were forage production (hay and straw), access to water sources, livestock diversification and migration. The implication is that people severely affected by climate change and living in a situation demanding urgent solutions can actively apply various adaptation strategies if the strategies are linked to the creation of sustainable income benefits. Thus, integrated approaches comprising adaptation methods and expected benefits are an important way to induce farming communities to address challenges related to climatic change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.