To address whether reproductive state alters mammary gland extracellular matrix (ECM) composition and function, ECM was isolated from nulliparous, pregnant, lactating, involuting, and regressed rat mammary glands. The ECM composition of fibronectin, tenascin, laminin, clusterin, and MMPs was found to vary dramatically with reproductive state. In 3-dimensional (3-D) culture, we identified novel effects of these endogenous mammary matrices on mammary epithelial cells. Specifically we found that (1) matrix isolated from nulliparous animals promoted the formation of epithelial ducts with bifurcation, (2) matrix isolated from mid-involuting mammary glands induced cell death, (3) matrix isolated from late-stage involuting glands restored glandular development, while (4) matrix isolated from parous animals restricted glandular morphogenesis. Our data were consistent with mammary gland ECM facilitating epithelial cell proliferation, differentiation, death, and glandular reorganization that occur during the pregnancy and involution cycle. Further, we show that the parous gland has persistent changes in ECM function. Cumulatively, our data demonstrated that the microenvironment of the normal adult mammary gland is highly plastic, which has important implications for mammary tumor cell progression and dormancy. These data also raised the possibility of targeting mammary matrix production with preventive or therapeutic interventions.
The Sprague-Dawley rat is highly regarded for studies designed to investigate the effects of endocrine modulation on mammary carcinogenesis. In this study, we further evaluate the validity of the Sprague-Dawley rat model for the study of human breast cancer by evaluating the effects of normal 4-day estrous cycling on mammary epithelial cell proliferation, differentiation, and apoptotic death. Trends in mammary gland development with stage of 4-day estrous cycle were evident. Mammary glands isolated from follicular and early luteal stages had predominantly ductal histoarchitecture, whereas glands isolated from mid-late luteal were predominantly lobuloalveolar. Quantitation of BrdU incorporation revealed that epithelial cell proliferation was eight-fold higher in metestrus and diestrus-1 than in proestrus. Expression of beta-casein and whey acidic protein (WAP)4 mRNA was also highly dependent on stage of estrous, with detection restricted to midcycle. Apoptotic cell death of mammary epithelium was found to be suppressed during the peak in cell proliferation. TRPM-2/ clusterin mRNA was elevated when apoptosis was low and milk protein mRNA levels were high, consistent with putative roles for TRPM-2/clusterin in inhibiting cell death in regressing tissues and inducing mammary epithelial cell differentiation. Cell proliferation, differentiation, and death occurred only in a subset of epithelial cells per estrous cycle, and these cells appeared randomly distributed throughout multiple ductules and alveoli. These observations suggest that cellular response(s) to ovarian hormone-dependent signals is asynchronous. Cumulatively, these observations demonstrate that rat mammary epithelial cell proliferation, differentiation, and death are under the control of cycling ovarian hormones, similarly to the human mammary epithelium during the menstrual cycle.
The induction of mammary carcinogenesis in the rat by 1-methyl-1-nitrosourea (MNU) is widely used in experimental breast cancer research. In the experiments reported, the Ha-ras codon 12 (ras12) mutation (GGA-->GAA) was used as a molecular marker to address issues of the clonality of carcinomas induced, pathogenetic independence among multiple carcinomas within the same animal and topographic distribution of mutant ras12 carcinomas in different mammary gland chains. In order to determine whether the frequently observed morphologically distinguishable lobules within carcinomas originate from the coalescence of independent lesions or whether cancerous cells within a carcinoma share a common origin, 44 randomly selected MNU-induced mammary carcinomas were genotyped for two to four lobules each for the ras12 mutation. A total of 43 carcinomas out of 44 (97.7%) had concordant ras12 genotypes among the multiple sites within each tumor, which is consistent with the latter possibility. Next, it was observed that as carcinoma multiplicity increased, the discordance rate of ras12 genotypes among multiple carcinomas within the same animal increased in a manner that was in excellent agreement with the expected discordance rate based on an assumption of no pathogenetic association among carcinomas. Furthermore, a significant difference was observed in the occurrence of mutant ras12 carcinomas between the cervical-thoracic and the abdominal-inguinal mammary glands in that three times as many carcinomas were mutant in the former as in the latter glands, whereas the occurrence of wild-type carcinomas was approximately the same in both regions. Taken together, the data are consistent with (i) carcinomas induced by MNU and detected by palpation are monoclonal in origin, (ii) independently-initiated cells emerge as distinct mammary carcinomas in the same animal, and (iii) the anatomical location of the gland may affect the prevalence of mammary carcinomas that harbor a mutant ras12.
We tested the hypothesis that adolescent dietary vitamin A intake impacts mammary gland development and subsequent sensitivity to carcinogenesis. Sprague-Dawley rats were fed a purified diet that was vitamin A deficient, adequate (2.2 mg retinyl palmitate/kg diet), or supranutritional (16 mg retinyl palmitate/kg diet) from 21 to 63 days of age, the period of adolescent mammary gland development. At 73 days of age, rats were given 1-methyl-1-nitrosourea (25 mg/kg body wt i.p.) and monitored for mammary tumors. Tumors appeared earlier and more frequently in rats fed vitamin A-deficient or -supplemented diets. Vitamin A deficiency during adolescence was associated with alveolar mammary gland development and precocious milk protein expression, while supplementation was associated with ductal gland development and suppression of milk protein expression. Differences in circulating estradiol and mammary gland estrogen receptor-alpha, and estrogen-responsive progesterone receptor mRNA were not observed, suggesting that the effects of vitamin A on mammary gland development and carcinogenesis are estrogen independent. Mammary expression of another hormone receptor that regulates milk protein expression, the glucocorticoid receptor, was also unaffected. These results demonstrate that vitamin A intake during adolescence alters mammary gland differentiation and indicate that a narrow range of vitamin A intake during adolescence protects against carcinogenesis.
Mammary gland form and function are regulated by interactions between epithelium and extracellular matrix. Major glycoprotein components of extracellular matrix have been identified that give survival, proliferation and differentiation signals to mammary epithelial cells. We provide evidence that proteolytic fragments of the extracellular matrix glycoprotein, fibronectin, suppress growth and can promote apoptosis of mouse mammary epithelial cells. During mammary gland involution, total fibronectin and fibronectin fragment levels are increased. The peak levels of fibronectin protein and fragments are observed 4–6 days post-weaning, coincident with the peak in epithelial cell death. Using a model for hormone withdrawal-induced death of mammary epithelium, elevated levels of fibronectin proteolytic fragments were associated with apoptosis in TM-6 cells, a tumorigenic mouse mammary epithelial cell line. Treatment of TM-6 cells with exogenous fibronectin fragments (FN120) reduced cell number, and induced apoptosis and matrix degrading protease activity. Inhibition of matrix protease activity rescued TM-6 cell viability, indicating that FN120-induced cell loss is mediated through matrix protease activity. In a three-dimensional model for mammary gland development, FN120 reduced alveolar-like and promoted ductal-like development by a matrix protease-dependent mechanism. These data suggest that during post-lactational involution, fibronectin fragments may contribute to epithelial cell loss and dissolution of mammary alveoli by inducing matrix degrading proteinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.