The B cell activating factor BAFF (BlyS/TALL-1/zTNF4) is a tumor necrosis factor (TNF)-related ligand that promotes B cell survival and binds to three receptors (BCMA, TACI, and the recently described BAFF-R). Here we report an absolute requirement for BAFF in normal B cell development. Examination of secondary lymphoid organs from BAFF-deficient mice revealed an almost complete loss of follicular and marginal zone B lymphocytes. In contrast, mice lacking BCMA had normal-appearing B lymphocyte compartments. BAFF therefore plays a crucial role in B cell development and can function through receptors other than BCMA.
B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.
B cell maturation is a very selective process that requires finely tuned differentiation and survival signals. B cell activation factor from the TNF family (BAFF) is a TNF family member that binds to B cells and potentiates B cell receptor (BCR)-mediated proliferation. A role for BAFF in B cell survival was suggested by the observation of reduced peripheral B cell numbers in mice treated with reagents blocking BAFF, and high Bcl-2 levels detected in B cells from BAFF transgenic (Tg) mice. We tested in vitro the survival effect of BAFF on lymphocytes derived from primary and secondary lymphoid organs. BAFF induced survival of a subset of splenic immature B cells, referred to as transitional type 2 (T2) B cells. BAFF treatment allowed T2 B cells to survive and differentiate into mature B cells in response to signals through the BCR. The T2 and the marginal zone (MZ) B cell compartments were particularly enlarged in BAFF Tg mice. Immature transitional B cells are targets for negative selection, a feature thought to promote self-tolerance. These findings support a model in which excessive BAFF-mediated survival of peripheral immature B cells contributes to the emergence and maturation of autoreactive B cells, skewed towards the MZ compartment. This work provides new clues on mechanisms regulating B cell maturation and tolerance.
We have identified a small-molecule inhibitor of tumor necrosis factor alpha (TNF-alpha) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF-alpha activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600-fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-alpha subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.