To increase the temporal resolution and maximal imaging time of super-resolution (SR) microscopy, we have developed a deconvolution algorithm for structured illumination microscopy based on Hessian matrixes (Hessian-SIM). It uses the continuity of biological structures in multiple dimensions as a priori knowledge to guide image reconstruction and attains artifact-minimized SR images with less than 10% of the photon dose used by conventional SIM while substantially outperforming current algorithms at low signal intensities. Hessian-SIM enables rapid imaging of moving vesicles or loops in the endoplasmic reticulum without motion artifacts and with a spatiotemporal resolution of 88 nm and 188 Hz. Its high sensitivity allows the use of sub-millisecond excitation pulses followed by dark recovery times to reduce photobleaching of fluorescent proteins, enabling hour-long time-lapse SR imaging of actin filaments in live cells. Finally, we observed the structural dynamics of mitochondrial cristae and structures that, to our knowledge, have not been observed previously, such as enlarged fusion pores during vesicle exocytosis.
An elastic analysis of an internal Central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was performed. A dynamic model of bridging fiber pull-out of composite materials was presented. Resultingly the fiber failure is governed by maximum tensile stress, the fiber breaks and hence the crack extension should occur in self-similar fashion. By the methods of complex functions, the problem studied can be transformed into the:dynamic model to the Reimann-Hilbert mixed ooundary value problem, and a straightforward and easy analytical solution is presented. Analytical study on the crack propagation subjected to a ladder load and an instantaneous pulse loading is obtained respectively for orthotropic anisotropic body. By utilizing the solution, the concrete solutions of this model are attained by ways of superposition.
This paper presented the stress distribution in a thick walled cylinder under thermal shock. Dirac function was introduced to model thermal shock. An analytical solution of the temperature field was obtained by Laplace transform. Based on the temperature solution, the thermal stress response of the thick walled cylinder was solved. The time dependent variations of the temperature field—thermal stress field—were discussed, and the effect of cylinder radius ratio on the problem was given. The exploration in this paper will lay a theoretical reference to further study on the decrease in fatigue damage of the superhigh pressure tubular reactor under thermal shock.
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is −0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.