Diabetic retinopathy (DR) is one of the diseases that cause blindness globally. Untreated accumulation of fat and cholesterol may trigger atherosclerosis in the diabetic patient, which may obstruct blood vessels. Retinal fundus images are used as diagnostic tools to screen abnormalities linked to diseases that affect the eye. Blurriness and low contrast are major problems when segmenting retinal fundus images. This article proposes an algorithm to segment and detect hemorrhages in retinal fundus images. The proposed method first performs preprocessing on retinal fundus images. Then a novel smart windowing-based adaptive threshold is utilized to segment hemorrhages. Finally, conventional and hand-crafted features are extracted from each candidate and classified by a support vector machine. Two datasets are used to evaluate the algorithms. Precision rate (P), recall rate (R), and F1 score are used for quantitative evaluation of segmentation methods. Mean square error, peak signal to noise ratio, information entropy, and contrast are also used to evaluate preprocessing method. The proposed method achieves a high F1 score with 83.85% for the DIARETDB1 image dataset and 72.25% for the DIARETDB0 image dataset. The proposed algorithm adequately adapts when compared with conventional algorithms, hence will act as a tool for segmentation.
Diabetic retinopathy is a retinal compilation that causes visual impairment. Hemorrhage is one of the pathological symptoms of diabetic retinopathy that emerges during disease development. Therefore, hemorrhage detection reveals the presence of diabetic retinopathy in the early phase. Diagnosing the disease in its initial stage is crucial to adopt proper treatment so the repercussions can be prevented. The automatic deep learning-based hemorrhage detection method is proposed that can be used as the second interpreter for ophthalmologists to reduce the time and complexity of conventional screening methods. The quality of the images was enhanced, and the prospective hemorrhage locations were estimated in the preprocessing stage. Modified gamma correction adaptively illuminates fundus images by using gradient information to address the nonuniform brightness levels of images. The algorithm estimated the locations of potential candidates by using a Gaussian match filter, entropy thresholding, and mathematical morphology. The required objects were segmented using the regional diversity at estimated locations. The novel hemorrhage network is propounded for hemorrhage classification and compared with the renowned deep models. Two datasets benchmarked the model’s performance using sensitivity, specificity, precision, and accuracy metrics. Despite being the shallowest network, the proposed network marked competitive results than LeNet-5, AlexNet, ResNet50, and VGG-16. The hemorrhage network was assessed using training time and classification accuracy through synthetic experimentation. Results showed promising accuracy in the classification stage while significantly reducing training time. The research concluded that increasing deep network layers does not guarantee good results but rather increases training time. The suitable architecture of a deep model and its appropriate parameters are critical for obtaining excellent outcomes.
Diabetic retinopathy is an eye-related pathology creating abnormalities and causing visual impairment, proper treatment of which requires identifying irregularities. This research uses a hemorrhage detection method and compares the classification of conventional and deep features. Especially, the method identifies hemorrhage connected with blood vessels or residing at the retinal border and was reported challenging. Initially, adaptive brightness adjustment and contrast enhancement rectify degraded images. Prospective locations of hemorrhages are estimated by a Gaussian matched filter, entropy thresholding, and morphological operation. Hemorrhages are segmented by a novel technique based on the regional variance of intensities. Features are then extracted by conventional methods and deep models for training support vector machines and the results are evaluated. Evaluation metrics for each model are promising, but findings suggest that comparatively, deep models are more effective than conventional features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.