Open-and closed-loop control of a turbulent mixing layer is experimentally performed in a dedicated large scale, low speed wind-tunnel facility. The flow is manipulated by an array of fluidic micro-valve actuators integrated into the trailing edge of a splitter plate. Sensing is performed using a rake of hot-wire probes downstream of the splitter plate in the mixing layer. The control goal is the manipulation of the local fluctuating energy level. The mixing layer's response to the control is tested with open-loop forcing with a wide range of actuation frequencies. Results are discussed for different closed-loop control
In this work, we report on a closed-loop flow control strategy that consistently reduces the drag of a D-shaped bluff body under variable freestream velocity conditions. The control strategy is guided by open-loop tests with pulsed Coanda blowing at two freestream velocities that yield optimal frequencies (Strouhal number of 0.33 and 1.3), which reduce the drag by up to 40%. The strong correlation between drag coefficient (Cd) and the wake fluctuations is exploited for the feedback signal, where a microphone signal is used to measure the pressure fluctuations at the model base. The results demonstrate the ability to perform accurate and robust H∞-based control for drag reduction using solely the wake pressure fluctuations at the model base as feedback signal. The robust control strategy at constant freestream velocity is shown to improve output stability and enhance performance in terms of settling time, even when employing simple models of the flow response with large uncertainty. Building on that success, an H∞-based linear parameter varying controller is designed and implemented to reduce drag under free stream variations and/or fluctuations. Similarly, the results demonstrate improved robustness and performance enhancements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.