While amyloid-β protein (Aβ) aggregation into insoluble plaques is one of the pathological hallmarks of Alzheimer’s disease (AD), soluble oligomeric Aβ has been hypothesized to be responsible for synapse damage, neurodegeneration, learning, and memory deficits in AD. Here, we investigate the in vitro and in vivo efficacy of the d-enantiomeric peptide RD2, a rationally designed derivative of the previously described lead compound D3, which has been developed to efficiently eliminate toxic Aβ42 oligomers as a promising treatment strategy for AD. Besides the detailed in vitro characterization of RD2, we also report the results of a treatment study of APP/PS1 mice with RD2. After 28 days of treatment we observed enhancement of cognition and learning behaviour. Analysis on brain plaque load did not reveal significant changes, but a significant reduction of insoluble Aβ42. Our findings demonstrate that RD2 was significantly more efficient in Aβ oligomer elimination in vitro compared to D3. Enhanced cognition without reduction of plaque pathology in parallel suggests that synaptic malfunction due to Aβ oligomers rather than plaque pathology is decisive for disease development and progression. Thus, Aβ oligomer elimination by RD2 treatment may be also beneficial for AD patients.
Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment.
Amyloid-beta (Aβ) oligomers are thought to be causative for the development and progression of Alzheimer's disease (AD). Starting from the Aβ oligomer eliminating d-enantiomeric peptide D3, we developed and applied a two-step procedure based on peptide microarrays to identify D3 derivatives with increased binding affinity and specificity for monomeric Aβ(1-42) to further enhance the Aβ oligomer elimination efficacy. Out of more than 1000 D3 derivatives, we selected seven novel d-peptides, named ANK1 to ANK7, and characterized them in more detail in vitro. All ANK peptides bound to monomeric Aβ(1-42), eliminated Aβ(1-42) oligomers, inhibited Aβ(1-42) fibril formation, and reduced Aβ(1-42)-induced cytotoxicity more efficiently than D3. Additionally, ANK6 completely inhibited the prion-like propagation of preformed Aβ(1-42) seeds and showed a nonsignificant tendency for improving memory performance of tg-APPSwDI mice after i.p. application for 4 weeks. This supports the hypothesis that stabilization of Aβ monomers and thereby induced elimination of Aβ oligomers is a suitable therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.