Smart structures have attracted significant research attention in the last decade, mainly due to the capabilities of advanced concrete in electrical resistance-enabled self-sensing. In this study, we present a type of environment-friendly, self-sensing concrete enabled by electrical resistance. Environment-friendly, self-sensing concrete was casted with the additions of byproduct wastes (i.e., coal fly ash (FA), blast furnace slag (BOF) and red mud (RM)) at various volume fractions and cured using the conditions of 3, 7 and 28 days. The self-sensing concrete samples were experimentally tested to investigate the effects of the byproduct wastes on the mechanical and electrical properties (i.e., compressive strength and electrical resistance). In the end, parametric studies were experimentally conducted to investigate the influences of the byproduct wastes on the mechanical and electrical properties of the reported environment-friendly, self-sensing concrete.
Portland cement tends to exhibit negative environmental impacts; thus, it is required to find measures that will improve its green credentials. In this study, we report a blended Portland slag cement as an alternative environmentally-friendly building material in order to reduce the total carbon footprint resulted from the production of the ordinary Portland cement (OPC), which may resolve the environmental issues associated with carbon dioxide emissions. The ordinary Portland cement type I enhanced by basic oxygen steelmaking slag (BOF) is produced and casted into cubic and beam-like samples for the compressive and three-point bending tests, and the compressive and flexural strengths are experimentally measured. Numerical simulations are conducted to compare with the experimental result and satisfactory agreements are obtained. X-ray diffraction (XRD) investigations and porosity tests are then carried out using the semi-adiabatic calorimetry, which indicates that 5% BOF is the optimal ratio to accelerate the hydration process while increasing the amount of hydration products, especially at the early curing age of 3 days. Scanning electron microscope (SEM) images further indicate that BOF can be used to prevent the development of microcracks while mitigating their propagation within cement mortar. Our study indicates that the compressive strength of OPC can be critically increased by BOF at the relatively low concentrations of 5%. The blended slag cement reported in this paper provides advanced understanding on the green building material that uses byproduct wastes for the mechanical and electrical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.