The natural killer T (NKT) cell ligand α-galactosylceramide (α-GalCer) exhibits profound antitumor activities in vivo that resemble interleukin (IL)-12–mediated antitumor activities. Because of these similarities between the activities of α-GalCer and IL-12, we investigated the involvement of IL-12 in the activation of NKT cells by α-GalCer. We first established, using purified subsets of various lymphocyte populations, that α-GalCer selectively activates NKT cells for production of interferon (IFN)-γ. Production of IFN-γ by NKT cells in response to α-GalCer required IL-12 produced by dendritic cells (DCs) and direct contact between NKT cells and DCs through CD40/CD40 ligand interactions. Moreover, α-GalCer strongly induced the expression of IL-12 receptor on NKT cells from wild-type but not CD1−/− or Vα14−/− mice. This effect of α-GalCer required the production of IFN-γ by NKT cells and production of IL-12 by DCs. Finally, we showed that treatment of mice with suboptimal doses of α-GalCer together with suboptimal doses of IL-12 resulted in strongly enhanced natural killing activity and IFN-γ production. Collectively, these findings indicate an important role for DC-produced IL-12 in the activation of NKT cells by α-GalCer and suggest that NKT cells may be able to condition DCs for subsequent immune responses. Our results also suggest a novel approach for immunotherapy of cancer.
The role of T helper type 1 (Th1) and Th2 cells in tumor immunity was investigated using Th cells induced from ovalbumin (OVA)-specific T cell receptor transgenic mice. Although Th1 cells exhibited stronger cytotoxicity than Th2 cells, both cell types completely eradicated tumors when transferred into mice bearing A20 tumor cells transfected with the OVA gene (A20-OVA). Th1 cells eradicated the tumor mass by inducing cellular immunity, whereas Th2 cells destroyed the tumor by inducing tumor necrosis. Both Th1 and Th2 cells required CD8+ T cells to eliminate tumors, and neither of these cells were able to completely eliminate A20-OVA tumors from T and B cell–deficient RAG2−/− mice. Mice cured from tumors by Th1 and Th2 cell therapy rejected A20-OVA upon rechallenge, but CD8+ cytotoxic T lymphocytes were induced only from spleen cells prepared from cured mice by Th1 cell therapy. Moreover, we demonstrated that Th1 and Th2 cells used distinct adhesion mechanisms during tumor eradication: the leukocyte function-associated antigen (LFA)-1–dependent cell–cell adhesion step was essential for Th1 cell therapy, but not for Th2 cell therapy. These findings demonstrated for the first time the distinct role of antigen-specific Th1 and Th2 cells during eradication of established tumors in vivo.
Post-IFN treatment ALT and AFP levels are significantly associated with hepatocarcinogenesis. Measurement of these values is useful for predicting future HCC risk after IFN treatment. Suppression of these values after IFN therapy reduces HCC risk even in patients without HCV eradication.
SummaryTo determine the role of vascular cell adhesion molecule 1 (VCAM-1) /very late activation antigen 4 (VLA-4) and intercellular adhesion molecule 1 (ICAM-1)/lymphocyte function-associated antigen 1 (LFA-1) interactions in causing antigen-induced eosinophil and T cell recruitment into the tissue, we studied the effect of the in vivo blocking of VCAM-1, ICAM-1, VLA-4, and LFA-1 by pretreatment with monoclonal antibodies (mAb) to these four adhesion molecules on the eosinophil and T cell infiltration of the trachea induced by antigen inhalation in mice. The in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, prevented antigen-induced eosinophil infiltration into the mouse trachea. On the contrary, the in vivo blocking of VCAM-1 and VLA-4, but not of ICAM-1 and LFA-1, increased blood eosinophil counts after antigen challenge, but did not affect blood eosinophil counts without antigen challenge in sensitized mice. Furthermore, the expression of VCAM-1 but not ICAM-1 was strongly induced on the endothelium of the trachea after antigen challenge. In addition, pretreatment with anti-IL-4 mAb decreased the antigen-induced VCAM-1 expression only by 27% and had no significant effect on antigen-induced eosinophil infiltration into the trachea. The in vivo blocking of VCAM-1 and VLA-4 inhibited antigen-induced CD4 + and CD8 + T cell infiltration into the trachea more potently than that of ICAM-1 and LFA-1. In contrast, regardless of antigen challenge, the in vivo blocking of LFA-1, but not of ICAM-1, increased blood lymphocyte counts more than that of VCAM-1 and VLA-4. These results indicate that VCAM-1/VLA-4 interaction plays a predominant role in controlling antigen-induced eosinophil and T cell recruitment into the tissue and that the induction of VCAM-1 expression on the endothelium at the site of allergic inflammation regulates this eosinophil and T cell recruitment.
Based on the evidence that IL-17 is a key cytokine involved in various inflammatory diseases, we explored the critical role of IL-17-producing cd T cells for tumor development in tumor-bearing mouse model. IL-17 À/À mice exhibited a significant reduction of tumor growth, concomitantly with the decrease of vascular density at lesion area, indicating a pro-tumor property of IL-17. Among tumor-infiltrating lymphocytes (TIL), cd T cells were the major cellular source of IL-17. Analysis of TCR repertoires in TIL-cd T cells showed that circulating cd T cells, but not skin resident Vc5 1 cd T cells, produced IL-17. Neutralizing antibodies against IL-23, IL-6, and TGF-b, which were produced within the tumor microenvironment, inhibited the induction of IL-17-producing cd T cells. IL-17 production by tumor-infiltrating cd T cells was blocked by anti-cdTCR or anti-NKG2D antibodies, indicating that these ligands, expressed within the tumor microenvironment, are involved in cd T-cell activation. The IL-17-producing TIL-cd T cells exhibited reduced levels of perforin mRNA expression, but increased levels of COX-2 mRNA expression. Together, our findings support the novel concept that IL-17-producing cd T cells, generated in response to tumor microenvironment, act as tumor-promoting cells by inducing angiogenesis. IntroductionIn order to understand how tumor cells can escape immune surveillance mechanisms and thus develop anti-tumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. The tumor microenvironment, which is mainly composed of tumor cells, stromal cells, and tumor-infiltrating immune cells, is entirely different from noncancerous tissues. This unique microenvironment potently inhibits immune responses against tumor cells via various soluble mediators and contact-dependent mechanisms [1,2]. Previously, it was suggested that T-cell Eur. J. Immunol. 2010. 40: 1927-1937 DOI 10.1002 Cellular immune response 1927 responses within the local tumor tissue are completely inhibited. However, this concept was abandoned following the discovery of the regulatory T-cell and Th17 cell subsets, which are activated rather than suppressed in the tumor microenvironment via TGF-b and/or IL-6. Thus, the tumor microenvironment is conducive to IL-17 production. In fact, it has been shown that IL-17 is produced in human and murine tumor tissues [3][4][5]. Tumor cells promote neo-vascularization into tumor tissues through hyperproduction of angiogenic factors, which also support their own abnormal proliferation and survival [6]. It has been reported that tumor cells over-expressing IL-17 significantly promote new vessel growth into the tumor tissues [5]; however, physiological effects of IL-17 on tumor progression remain to be defined. Th17 differentiation from naïve CD4 1 T cells is regulated by TGF-b and IL-6. Proliferation, maintenance and full maturation of these cells are controlled by . Recently, it has been shown that IL-17 is produced by diverse T...
In vivo administration of NKT cell ligand, alpha-galactosylceramide (alpha-GalCer), caused the activation of NKT cells to induce a strong NK activity and cytokine production by CD1d-restricted mechanisms. Surprisingly, we also found that alpha-GalCer induced the activation of immunoregulatory cells involved in acquired immunity. Specifically, in vivo administration of alpha-GalCer resulted in the induction of the early activation marker CD69 on CD4(+) T cells, CD8(+) T cells and B cells in addition to macrophages and NKT cells. However, no significant induction of CD69 was observed on cells from CD1d- or V(alpha)14 NKT-deficient mice, indicating an essential role for the interaction between NKT cells and CD1d-expressing dendritic cells (DC) in the activation of acquired immunity in response to alpha-GalCer. Indeed, in vivo injection of alpha-GalCer resulted not only in the activation of NKT cells but also in the generation of CD69(+)CD8(+) T cells possessing both cytotoxic T lymphocyte (CTL) activity and IFN-gamma-producing ability. Tumor-specific CTL generation was also accelerated by alpha-GalCer. The critical role of CD40-CD40 ligand (CD40L)-mediated NKT-DC interaction during the development of CD69(+)CD8(+) CTL by alpha-GalCer was demonstrated by blocking experiments using anti-CD40L mAb. These findings provide direct evidence for a critical role of CD1d-restricted NKT cells and DC in bridging innate and acquired immunity.
BackgroundWe aimed to elucidate the relationship between serum myostatin levels and other markers including skeletal muscle mass and to investigate the influence of serum myostatin levels on survival for patients with liver cirrhosis (LC).MethodsA total of 198 LC subjects were analysed in this study. Myostatin levels were measured using stored sera. We retrospectively investigated the relationship between myostatin level and other markers, and the influence of myostatin level on overall survival (OS). Assessment of skeletal muscle mass was performed using the psoas muscle index (PMI) on computed tomography images at baseline. PMI indicates the sum of bilateral psoas muscle mass calculated by hand tracing at the lumber three level on computed tomography images divided by height squared (cm2/m2). The study cohort was divided into two groups based on the median myostatin value in each gender.ResultsOur study cohort included 108 male and 90 female patients with a median age of 67.5 years. The median (range) myostatin level for male patients was 3419.6 pg/mL (578.4–12897.7 pg/mL), whereas that for female patients was 2662.4 pg/mL (710.4–8782.0 pg/mL) (P = 0.0024). Median (range) serum myostatin level for Child–Pugh A patients (n = 123) was 2726.0 pg/mL (578.4–12667.2 pg/mL), whereas that for Child–Pugh B or C patients (n = 75) was 3615.2 pg/mL (663.3–12897.7 pg/mL) (P = 0.0011). For the entire cohort, the 1‐, 3‐, 5‐, and 7‐year cumulative OS rates were 93.94%, 72.71%, 50.37%, and 38.47%, respectively, in the high‐myostatin group and 96.97%, 83.27%, 73.60%, and 69.95%, respectively, in the low‐myostatin group (P = 0.0001). After excluding hepatocellular carcinoma patients (at baseline) from our analysis (n = 158), the 1‐, 3‐, 5‐, and 7‐year cumulative OS rates were 96.0%, 77.93%, 52.97%, and 39.08%, respectively, in the high‐myostatin group and 96.39%, 87.58%, 77.63%, and 73.24%, respectively, in the low‐myostatin group (P = 0.0005). Higher age (P = 0.0111) and lower PMI (P < 0.0001) were identified as significant predictors of poorer OS in our multivariate analysis, while higher serum myostatin (P = 0.0855) tended to be a significant adverse predictor. In both genders, PMI, serum albumin, prothrombin time, and branched‐chain amino acid to tyrosine ratio showed a significantly inverse correlation with myostatin levels, and serum ammonia levels showed a significantly positive correlation with myostatin levels.ConclusionsHigher serum myostatin levels correlated with muscle mass loss, hyperammonemia, and impaired protein synthesis, as reflected by lower serum albumin levels and lower branched‐chain amino acid to tyrosine ratio levels. High serum myostatin levels were also associated with a reduced OS rate in LC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.