This in situ study evaluated the effect of Er:YAG laser irradiation in controlling the progression of enamel erosion-like lesions. Fifty-six enamel slabs (330 KHN ± 10 %) with one fourth of the surface covered with resin composite (control area) were submitted to initial erosion-like lesion formation with citric acid. The slabs were divided into two groups: irradiated with Er:YAG laser and non-irradiated. Fourteen volunteers used an intraoral palatal appliance containing two slabs, in two phases of 5 days each. During the intraoral phase, in a crossed-over design, half of the volunteers immersed the appliance in citric acid while the other half used deionized water, both for 5 min, three times per day. Enamel wear was determined by an optical 3D profilometer. ANOVA revealed that when deionized water was used as immersion solution during the intraoral phase, lower values of wear were showed when compared with the groups that were eroded with citric acid, whether irradiated or non-irradiated with Er:YAG laser. When erosion with citric acid was performed, Er:YAG laser was not able to reduce enamel wear. Small changes on enamel surface were observed when it was irradiated with Er:YAG laser. It may be concluded that Er:YAG laser irradiation did not reduce the progression of erosive lesions on enamel submitted to in situ erosion with citric acid.
This study evaluated the combined effect of fluoride compounds and CO(2) laser in controlling the permeability of eroded enamel. Bovine enamel slabs (3 × 2 mm) were cycled twice through an alternating erosion and remineralization regimen. Slabs were immersed in 20 ml of orange juice (pH 3.84) for 5 min under agitation, rinsed with deionized water, and stored in artificial saliva for 4 h to form erosive lesions. Specimens were then divided into four groups (n = 10), which were treated for 1 min with either a control or with one of the following gels: amine fluoride (AmF), titanium tetrafluoride (TiF(4)), or sodium fluoride (NaF). Half of the specimens were irradiated with a CO(2) laser (λ = 10.6 μm; 2.0 W). Specimens were cycled two more times through the aforementioned erosion-remineralization regimen and were subjected to permeability assessment. ANOVA demonstrated a significant interaction between fluoride and laser treatment (p = 0.0152). Tukey's test showed that when fluoride was applied alone, TiF(4) resulted in lower enamel permeability than that observed after application of the placebo gel. Intermediate permeability values were noted after NaF and AmF had been used. A significant reduction in enamel permeability was obtained when fluoride was combined with CO(2) laser treatment, with no difference between fluoride gels. Permeability of eroded enamel may be reduced by combining the application of fluoride gels with CO(2) laser irradiation.
Under the conditions of this study, the conventional etching protocol (phosphoric acid without salivary contamination) is still preferable to laser-conditioning enamel surface prior to sealant application.
This study concluded that Er:YAG and Nd:YAG lasers can be employed to control the permeability of eroded root dentin, regardless of fluoride varnish application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.