For data analyses, it is very important to combine data with similar attribute values into a categorically homogeneous subset, called a cluster, and this technique is called clustering. Generally crisp clustering algorithms are weak in noise, because each datum should be assigned to exactly one cluster. In order to solve the problem, a fuzzy c-means, a fuzzy maximum likelihood estimation, and an optimal fuzzy clustering algorithms in the fuzzy set theory have been proposed. They, however, require a lot of processing time because of exhaustive iteration with an amount of data and their memberships. Especially large memory space results in the degradation of performance in real-time processing applications, because it takes too much time to swap between the main memory and the secondary memory. To overcome these limitations, an extended fuzzy clustering algorithm based on an unsupervised optimal fuzzy clustering algorithm is proposed in this paper. This algorithm assigns a weight factor to each distinct datum considering its occurrence rate. Also, the proposed extended fuzzy clustering algorithm considers the degree of importances of each attribute, which determines the characteristics of the data. The worst case is that the whole data has an uniformly normal distribution, which means the importance of all attributes are the same. The proposed extended fuzzy clustering algorithm has better performance than the unsupervised optimal fuzzy clustering algorithm in terms of memory space and execution time in most cases. For simulation the proposed algorithm is applied to color image segmentation. Also automatic target detection and multipeak detection are considered as applications. These schemes can be applied to any other fuzzy clustering algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.