Interleukin-15 (IL-15) and IL-2 drive T-cell malignancies including T-cell large granular lymphocyte leukemia (T-LGLL) and HTLV-1 driven adult T-cell leukemia (ATL). Both cytokines share common γ-chain receptors and downstream signaling pathways. T-LGLL is characterized by clonal expansion of cytotoxic T cells and is associated with abnormal JAK/STAT signaling. ATL is an aggressive CD4+ T cell neoplasm associated with HTLV-1. T-LGLL and ATL share dependence on IL-2 and IL-15 for survival and both diseases lack effective therapies. BNZ-1 is a pegylated peptide designed to specifically bind the γc receptor to selectively block IL-2, IL-15 and IL-9 signaling. We hypothesized that treatment with BNZ-1 would reduce cytokine mediated proliferation and viability. Our results demonstrated that
in vitro
treatment of a T-LGLL cell line and
ex vivo
treatment of T-LGLL patient cells with BNZ-1 inhibited cytokine mediated viability. Furthermore, BNZ-1 blocked downstream signaling and increased apoptosis. These results were mirrored in an ATL cell line and in
ex vivo
ATL patient cells. Lastly, BNZ-1 drastically reduced leukemic burden in an IL-15-driven human ATL mouse xenograft model. Thus, BNZ-1 shows great promise as a novel therapy for T-LGLL, ATL and other IL-2 or IL-15 driven hematopoietic malignancies.
Large granular lymphocyte (LGL) leukemia arises spontaneously in elderly Fischer (F344) rats. This rodent model has been shown to emulate many aspects of the natural killer (NK) variant of human LGL leukemia. Previous transplantation of leukemic material into young F344 rats resulted in several strains of rat NK (RNK) primary leukemic cells. One strain, RNK-16, was adapted into the RNK-16 cell line and established as an aggressive NK-LGL leukemia model. Whole genome sequencing of the RNK-16 cell line identified 255,838 locations where the RNK16 had an alternate allele that was different from F344, including a mutation in Jak1. Functional studies showed Jak1 Y1034C to be a somatic activating mutation that mediated increased STAT signaling, as assessed by phosphoprotein levels. Sanger sequencing of Jak1 in RNK-1, -3, -7, and -16 found only RNK-16 to harbor the Y1034C Jak1 mutation. In vivo studies revealed that rats engrafted with RNK-16 primary material developed leukemia more rapidly than those engrafted with RNK-1, -3, and -7. Additionally, ex vivo RNK-16 spleen cells from leukemic rats exhibited increased STAT1, STAT3, and STAT5 phosphorylation compared to other RNK strains. Therefore, we report and characterize a novel gain-of-function Jak1 mutation in a spontaneous LGL leukemia model that results in increased downstream STAT signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.