Previous studies have shown that nanomolar acetylcholine (ACh) produces a 2 to 4-mV hyperpolarization of skeletal muscle fibers putatively due to Na(+),K(+)-ATPase activation. The present study elucidates the involvement of the nicotinic ACh receptor (nAChR) and of Na(+),K(+)-ATPase isoform(s) in ACh-induced hyperpolarization of rat diaphragm muscle fibers. A variety of ligands of specific binding sites of nAChR and Na(+),K(+)-ATPase were used. Dose-response curves for ouabain, a specific Na(+),K(+)-ATPase inhibitor, were obtained to ascertain which Na(+),K(+)-ATPase isoform(s) is involved. The ACh dose-response relationship for the hyperpolarization was also determined. The functional relationship between these two proteins was also studied in a less complex system, a membrane preparation from Torpedo electric organ. The possibility of a direct ACh effect on Na(+),K(+)-ATPase was studied in purified lamb kidney Na(+),K(+)-ATPase and in rat red blood cells, systems where no nAChR is present. The results indicate that binding of nAChR agonists to their specific sites results in modulation of ouabain-sensitive (most probably alpha2) isoform of Na(+),K(+)-ATPase, leading to muscle membrane hyperpolarization. In the Torpedo preparation, ouabain modulates dansyl-C6-choline binding to nAChR, and vice versa. These results provide the first evidence of a functional interaction between nAChR and Na(+),K(+)-ATPase. Possible interaction mechanisms are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.