Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia and associated with the disruption of circadian rhythm. The study aimed to assess the relationship between hypoxia-inducible factor (HIF) subunits, circadian clock proteins, and polysomnography (PSG) variables, in healthy individuals and severe OSA patients. The study included 20 individuals, who underwent PSG and were divided into severe OSA group (n = 10; AHI ≥ 30) and healthy control (n = 10; AHI < 5) based on apnea-hypopnea index (AHI). All participants had their peripheral blood collected in the evening before and the morning after the PSG. HIF-1α, HIF-1β, BMAL1, CLOCK, CRY1, and PER1 protein concertation measurements were performed using ELISA. In a multivariate general linear model with the concentration of all circadian clock proteins as dependent variables, evening HIF-1α protein level was the only significant covariant (p = 0.025). Corrected models were significant for morning and evening PER1 (p = 0.008 and p = 0.006, respectively), evening (p = 0.043), and evening BMAL protein level (p = 0.046). In corrected models, evening HIF-1α protein level had an influence only on the evening PER1 protein level. Results suggest that OSA patients are at risk for developing circadian clock disruption. This process might be mediated by subunit α of HIF-1, as its increased protein level is associated with overexpression of circadian clock proteins.
Obstructive sleep apnea (OSA) is a recognized independent risk factor for metabolic disorders, type 2 diabetes mellites (DM2) in particular. Therefore, the study aimed to assess the influence of nocturnal oxygen saturation parameters on the onset of DM2 among OSA patients. The study consisted of 549 participants, who underwent polysomnography examination. Based on apnea hypopnea index (AHI), 465 patients were diagnosed with OSA. One hundred and seven individuals had comorbid DM2. Cox regression models were used to assess the effect of oxygen saturation parameters on the onset of DM2. Classification and regression trees (CART) analysis was used to assess the onset of the DM2 in the study group in context of oxygen saturation variables. One-way Cox regression showed higher risk of earlier DM2 for increased values of BMI, AHI, decreased basal O2 and O2 nadir value, while lowered mean O2 desaturation has not shown statistical significance. In the CART analysis, the following cut-off points 92.2%, 81.7%, 87.1% were determined for basal O2, O2 nadir and mean O2 desaturation, respectively, with the first two parameters being statistically significant. Therefore, basal O2 is independent from AHI, BMI and age is a risk factor of DM2 among OSA patients.
Epidemiological studies have shown that individuals with sleep problems are at a greater risk of developing immune and chronic inflammatory diseases. As sleep disorders and low sleep quality in the general population are frequent ailments, it seems important to recognize them as serious public health problems. The exact relation between immunity and sleep remains elusive; however, it might be suspected that it is shaped by others stress and alterations of the circadian rhythm (commonly caused by for example shift work). As studies show, drugs used in the therapy of chronic inflammatory diseases, such as steroids or monoclonal antibodies, also influence sleep in more complex ways than those resulting from attenuation of the disease symptoms. Interestingly, the relation between sleep and immunity appears to be bidirectional; that is, sleep may influence the course of immune diseases, such as inflammatory bowel disease. Thus, proper diagnosis and treatment of sleep disorders are vital to the patient’s immune status and, in effect, health. This review examines the epidemiology of sleep disorders and immune diseases, the associations between them, and their current treatment and novel perspectives in therapy.
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Obstructive sleep apnea (OSA) is chronic disorder which is characterized by recurrent pauses of breathing during sleep which leads to hypoxia and its two main pathological sequelae: oxidative stress and chronic inflammation. Both are also associated with cellular senescence. As OSA patients present with higher prevalence of age-related disorders, such as atrial hypertension or diabetes mellitus type 2, a relationship between OSA and accelerated aging is observable. Furthermore, it has been established that these OSA are associated with telomere shortening. This process in OSA is likely caused by increased oxidative DNA damage due to increased reactive oxygen species levels, DNA repair disruptions, hypoxia, chronic inflammation, and circadian clock disturbances. The aim of the review is to summarize study outcomes on changes in leukocyte telomere length (LTL) in OSA patients and describe possible molecular mechanisms which connect cellular senescence and the pathophysiology of OSA. The majority of OSA patients are characterized by LTL attrition due to oxidative stress, hypoxia and inflammation, which make a kind of positive feedback loop, and circadian clock disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.