Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a na€ ıve pluripotent state. Efforts have been made to trigger na€ ıve pluripotency in hESCs for subsequent unbiased lineage-specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of na€ ıve genes such as NANOG and KLF2 or inclusion of multiple pluripotency-associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor 1 Ascorbic Acid 1 Forskolin) facilitating rapid induction of transgene-free na€ ıve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted na€ ıve hESCs survived long-term single-cell passaging, maintained a normal karyotype, upregulated na€ ıve pluripotency genes, and exhibited dependence on signaling pathways similar to na€ ıve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward na€ ıve pluripotency. Collectively, we demonstrate an alternate route to capture na€ ıve pluripotency in hESCs that is fast, reproducible, supports na€ ıve mESC derivation, and allows efficient differentiation. STEM CELLS 2015;33:2686-2698 SIGNIFICANCE STATEMENTNa€ ıve pluripotency, commonly displayed by mouse embryonic stem cells (ESCs), holds several advantages over stem cells exhibiting a primed pluripotent state such as human ESCs, which already show a bias towards certain lineages. We report the formulation of a novel culture condition with minimal components facilitating rapid, robust and efficient induction of na€ ıve pluripotency in primed human ESCs. These novel na€ ıve human ESCs were karyotypically normal, underwent efficient single cell passaging, exhibited a unique epigenetic and lncRNA profile and unbiased lineage-specific differentiation similar to mouse ESCs. This na€ ıve state of pluripotency is important for possible future regenerative cell applications including efficient genome engineering and targeted gene correction.
This research is supported by NIH's NICHD and NCI (5R01HD053112-06 and 5R21HD061259-02) and the Flemish Foundation for Scientific Research (FWO-Vlaanderen, grant number FWO G0.065.11N10). The authors have no conflicts of interest to disclose.
Female-to-male transgender people (trans men) are faced with the risk of losing their reproductive potential owing to gender-affirming hormone treatment and genital reconstructive surgery. This observational, prospective cohort study investigates the effect of prolonged androgen therapy on their ovarian histology and fertility preservation perspectives. Hormone serum levels, ovarian histology and cumulus-oocyte complexes (COC) of 40 trans men were analysed at the moment of hysterectomy with bilateral oophorectomy in the context of genital reconstructive surgery after testosterone treatment (58.18 ± 26.57 weeks). In the cortex, most follicles were primordial (68.52% total follicle count) compared with 20.26% intermediate and 10.74%primary follicles. Few secondary follicles (0.46%) and a single antral follicle were found in the sections analysed. In total, 1313 COC were retrieved from the medulla of 35 patients (37.51 ± 33.58 COC per patient). Anti-Müllerian hormone serum levels were significantly correlated with number of COC (R 0.787, P < 0.001). After 48 h in-vitro maturation, 34.30% metaphase II oocytes were obtained, with 87.10% having a normal spindle structure. In conclusion, the cortical follicle distribution in trans men, after more than a year of testosterone treatment, seems to be surprisingly normal. This work confirms the presence and in-vitro maturation potential of cumulus-oocyte complexes.
The different pluripotent states of mouse embryonic stem cells (ESCs) in vitro have been shown to correspond to stages of mouse embryonic development. For human cells, little is known about the events that precede the generation of ESCs or whether they correlate with in vivo developmental stages. Here we investigate the cellular and molecular changes that occur during the transition from the human inner cell mass (ICM) to ESCs in vitro. We demonstrate that human ESCs originate from a post-ICM intermediate (PICMI), a transient epiblast-like structure that has undergone X-inactivation in female cells and is both necessary and sufficient for ESC derivation. The PICMI is the result of progressive and defined ICM organization in vitro and has a distinct state of cell signaling. The PICMI can be cryopreserved without compromising ESC derivation capacity. As a closer progenitor of ESCs than the ICM, the PICMI provides insight into the pluripotent state of human stem cells.
Until recently, human embryonic stem cells (hESCs) were shown to exist in a state of primed pluripotency, while mouse embryonic stem cells (mESCs) display a naive or primed pluripotent state. Here we show the rapid conversion of in-house-derived primed hESCs on mouse embryonic feeder layer (MEF) to a naive state within 5–6 days in naive conversion media (NCM-MEF), 6–10 days in naive human stem cell media (NHSM-MEF) and 14–20 days using the reverse-toggle protocol (RT-MEF). We further observe enhanced unbiased lineage-specific differentiation potential of naive hESCs converted in NCM-MEF, however, all naive hESCs fail to differentiate towards functional cell types. RNA-seq analysis reveals a divergent role of PI3K/AKT/mTORC signalling, specifically of the mTORC2 subunit, in the different naive hESCs. Overall, we demonstrate a direct evaluation of several naive culture conditions performed in the same laboratory, thereby contributing to an unbiased, more in-depth understanding of different naive hESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.