Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s.
Experiments were designed to elucidate the control of ovarian follicle turnover and the impact of follicular dynamics on the subsequent fertility of dairy cattle. An experimental model was established to examine the interrelationships of gene expression for steroid enzymes, the insulin-like growth factor system and inhibin production as associated with follicle selection, dominance and atresia. Follicular dynamics during the postpartum period and the oestrous cycle are shown to be altered markedly by the metabolic demands of lactation. The feeding of ruminally-inert fat stimulated follicular development and improved reproductive performance. The development of persistent follicles during oestrus synchronization causes a reduction in fertility that can be corrected by recruitment and selection of a new ovulatory follicle after the injection of a gonadotrophin-releasing hormone agonist. Present systems of oestrus synchronization need to consider both synchronization of follicular development and corpus luteal regression in order to optimize fertility. With current systems manipulating follicle development, the potential to implement a timed insemination programme to improve reproductive management exists. Ovulation of the first-wave dominant follicle with human chorionic gonadotrophin provides a means to markedly enhance concentrations of plasma progesterone in the luteal phase.
Atrazine is currently one of the most widely used herbicides in the United States and elsewhere. Here we examined 24 h in vitro and in vivo effects of atrazine on androgen production and on expression and activity of steroidogenic enzymes and regulatory proteins involved in cyclic adenosine monophosphate (cAMP)-signaling pathway in peripubertal rat Leydig cells. When in vitro added, 1-50 μM atrazine increased basal and human chorion gonadotropin-stimulated testosterone production and accumulation of cAMP in the medium of treated cells. The stimulatory action of atrazine on androgen production but not on cAMP accumulation was abolished in cells with inhibited protein kinase A. Atrazine also stimulated the expression of mRNA transcripts for steroidogenic factor-1, steroidogenic acute regulatory protein, cytochrome P450 (CYP)17A1, and 17β-hydroxysteroid dehydrogenase (HSD), as well as the activity of CYP17A1 and 17βHSD. The stimulatory effects of atrazine on cAMP accumulation and androgen production were also observed during the first 3 days of in vivo treatment (200 mg/kg body weight, by gavage) followed by a decline during further treatment. These results indicate that atrazine has a transient stimulatory action on cAMP signaling pathway in Leydig cells, leading to facilitated androgenesis.
In the present study, we investigated the effects of oral dosing of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) to peripubertal male rats (50 and 200 mg/kg body weight daily from postnatal days 23-50) on ex vivo Leydig cell steroidogenesis. Leydig cells from treated rats were characterised by significant decline in mRNA transcripts of several genes responsible for steroidogenesis: luteinizing hormone receptor (LHR), scavenger receptor-B1, steroidogenic acute regulatory protein, translocator protein, steroidogenic factor-1, phosphodiesterase 4B, 3beta-hydroxysteroid dehydrogenase (HSD), CYP17A1, and 17betaHSD. In the presence of human chorion gonadotropin, the dose-dependent decrease in extracellular cAMP level and accordingly strong inhibition of androgenesis were obtained. The transcription of LHR gene in Leydig cells of atrazine-treated rats was downregulated in a dose-dependent manner, which could be the reason for reduction in cAMP level and expression of cAMP-dependent genes. To clarify the activity of the steroidogenic enzymes responsible for androgenesis, purified Leydig cells were challenged with different steroid substrates (22OH-cholesterol, pregnenolone, progesterone, and Delta(4)-androstenedione), and the obtained results indicated inhibition of androgen production in Leydig cells isolated from atrazine-treated animals in the presence of all those substrates. However, when Leydig cells were challenged with 22OH-cholesterol, the progesterone level in the incubation medium was unchanged, indicating that decrease in cholesterol transport and/or CYP17A1 and 17betaHSD activity are most probably responsible for inhibition of androgen production after the addition of different substrates. Our results demonstrated that in vivo exposure to atrazine affects Leydig cell steroidogenesis via the inhibition of steroidogenesis gene expression, which is accompanied by decreased androgenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.