We studied the toxic effects of glyphosate in vitro on HepG2 cells exposed for 4 and 24 h to low glyphosate concentrations likely to be encountered in occupational and residential exposures [the acceptable daily intake (ADI; 0.5 μg/mL), residential exposure level (REL; 2.91 μg/mL) and occupational exposure level (OEL; 3.5 μg/mL)]. The assessments were performed using biomarkers of oxidative stress, CCK-8 colorimetric assay for cell proliferation, alkaline comet assay and cytokinesis-block micronucleus (CBMN) cytome assay. The results obtained indicated effects on cell proliferation, both at 4 and 24 h. The levels of primary DNA damage after 4-h exposure were lower in treated vs. control samples, but were not significantly changed after 24 h. Using the CBMN assay, we found a significantly higher number of MN and nuclear buds at ADI and REL after 4 h and a lower number of MN after 24 h. The obtained results revealed significant oxidative damage. Four-hour exposure resulted in significant decrease at ADI [lipid peroxidation and glutathione peroxidase (GSH-Px)] and OEL [lipid peroxidation and level of total antioxidant capacity (TAC)], and 24-h exposure in significant decrease at OEL (TAC and GSH-Px). No significant effects were observed for the level of reactive oxygen species (ROS) and glutathione (GSH) for both treatment, and for 24 h for lipid peroxidation. Taken together, the elevated levels of cytogenetic damage found by the CBMN assay and the mechanisms of primary DNA damage should be further clarified, considering that the comet assay results indicate possible cross-linking or DNA adduct formation.
This review article provides a summary of the studies relying on oxidative stress biomarkers (lipid peroxidation and antioxidant enzymes in particular) to investigate the effects of atrazine and terbuthylazine exposure in experimental animals and humans published since 2010. In general, experimental animals showed that atrazine and terbuthylazine exposure mostly affected their antioxidant defences and, to a lesser extent, lipid peroxidation, but the effects varied by the species, sex, age, herbicide concentration, and duration of exposure. Most of the studies involved aquatic organisms as useful and sensitive bio-indicators of environmental pollution and important part of the food chain. In laboratory mice and rats changes in oxidative stress markers were visible only with exposure to high doses of atrazine. Recently, our group reported that low-dose terbuthylazine could also induce oxidative stress in Wistar rats. It is evident that any experimental assessment of pesticide toxic effects should take into account a combination of several oxidative stress and antioxidant defence biomarkers in various tissues and cell compartments. The identified effects in experimental models should then be complemented and validated by epidemiological studies. This is important if we wish to understand the impact of pesticides on human health and to establish safe limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.