Plants are rich in phytoconstituent biomolecules that served as a good source of medicine. More recently, they have been employed in synthesizing metal/metal oxide nanoparticles (NPs) due to their capping and reducing properties. This green synthesis approach is environmentally friendly and allows the production of the desired NPs in different sizes and shapes by manipulating parameters during the synthesis process. The most commonly used metals and oxides are gold (Au), silver (Ag), and copper (Cu). Among these, Cu is a relatively low-cost metal that is more cost-effective than Au and Ag. In this review, we present an overview and current update of plant-mediated Cu/copper oxide (CuO) NPs, including their synthesis, medicinal applications, and mechanisms. Furthermore, the toxic effects of these NPs and their efficacy compared to commercial NPs are reviewed. This review provides an insight into the potential of developing plant-based Cu/CuO NPs as a therapeutic agent for various diseases in the future.
Abstract:Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.
In this research, various weight percents of LiPF 6 are incorporated into PEO-based polymer electrolyte system. Thin film electrolytes are prepared via solution casting technique and characterized by FTIR, XRD and DSC analyses in order to study their complex behaviour. The amorphicity of the electrolytes are measured by DC impedance. The results reveal that the conductivity increases with increasing temperature when the salt concentration increases to 20 wt.%. The conductivity for 20 wt.% of salt remains similar to the conductivity of 15 wt.% of salt at 318 K. Impedance studies show that the conductivity increases with increasing LiPF 6 concentration, whereas XRD studies reveal that the phase changes from crystalline to amorphous when LiPF 6 concentration increases. DSC studies indicate a decrease in T m with increasing LiPF 6 concentration. Finally, the complexation process is examined using FTIR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.