BackgroundMost women with a clinical presentation consistent with ovarian cancer have benign conditions. Therefore methods to distinguish women with ovarian cancer from those with benign conditions would be beneficial. We describe the development and preliminary evaluation of a serum-based multivariate assay for ovarian cancer. This hypothesis-driven study examined whether an informative pattern could be detected in stage I disease that persists through later stages.Methodology/Principal FindingsSera, collected under uniform protocols from multiple institutions, representing 176 cases and 187 controls from women presenting for surgery were examined using high-throughput, multiplexed immunoassays. All stages and common subtypes of epithelial ovarian cancer, and the most common benign ovarian conditions were represented. A panel of 104 antigens, 44 autoimmune and 56 infectious disease markers were assayed and informative combinations identified. Using a training set of 91 stage I data sets, representing 61 individual samples, and an equivalent number of controls, an 11-analyte profile, composed of CA-125, CA 19-9, EGF-R, C-reactive protein, myoglobin, apolipoprotein A1, apolipoprotein CIII, MIP-1α, IL-6, IL-18 and tenascin C was identified and appears informative for all stages and common subtypes of ovarian cancer. Using a testing set of 245 samples, approximately twice the size of the model building set, the classifier had 91.3% sensitivity and 88.5% specificity. While these preliminary results are promising, further refinement and extensive validation of the classifier in a clinical trial is necessary to determine if the test has clinical value.Conclusions/SignificanceWe describe a blood-based assay using 11 analytes that can distinguish women with ovarian cancer from those with benign conditions. Preliminary evaluation of the classifier suggests it has the potential to offer approximately 90% sensitivity and 90% specificity. While promising, the performance needs to be assessed in a blinded clinical validation study.
In previous studies we described the use of a retrospective collection of ovarian cancer and benign disease samples, in combination with a large set of multiplexed immunoassays and a multivariate pattern recognition algorithm, to develop an 11-biomarker classification profile that is predictive for the presence of epithelial ovarian cancer. In this study, customized, Luminex-based multiplexed immunoassay kits were GMP-manufactured and the classification profile was refined from 11 to 8 biomarkers (CA-125, epidermal growth factor receptor, CA 19-9, C-reactive protein, tenascin C, apolipoprotein AI, apolipoprotein CIII, and myoglobin). The customized kits and the 8-biomarker profile were then validated in a double-blinded manner using prospective samples collected from women scheduled for surgery, with a gynecologic oncologist, for suspicion of having ovarian cancer. The performance observed in model development held in validation, demonstrating 81.1% sensitivity (95% CI 72.6 – 87.9%) for invasive epithelial ovarian cancer and 85.4% specificity (95% CI 81.1 – 88.9%) for benign ovarian conditions. The specificity for normal healthy women was 95.6% (95% CI 83.6 – 99.2%). These results have encouraged us to undertake a second validation study arm, currently in progress, to examine the performance of the 8-biomarker profile on the population of women not under the surgical care of a gynecologic oncologist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.