Distributed Acoustic Sensor (DAS) has potential in applications such as hydroacoustic detection. In this paper, a dual-pulse heterodyne distributed acoustic sensor (DAS) system using a semiconductor optical amplifier (SOA)-based fiber ring laser (FRL) is proposed. Unlike the previous DAS system configurations, the SOA-based FRL replaces the narrow linewidth laser (NLL) and pulse modulator, reducing costs and simplifying the system. The system is demonstrated theoretically and validated experimentally. The adaptability of the SOA-based FRL in the heterodyne DAS system has been demonstrated in the experiments. Using the dual-pulse heterodyne detection method, the sensor system responds well to distributed acoustic detection and achieves accurate demodulation and positioning. A high signal-to-noise ratio (SNR) of 42.51 dB at 3 kHz is demonstrated as a demodulation result. The system’s frequency range is 5 Hz to 5 kHz with a spatial resolution of 12 m. The proposed approach shows a broad application prospect for low-cost, large-scale, high-SNR distributed acoustic detection in maritime surveillance.
Fiber-optic hydrophone (FOH) has significant potential in many applications of hydroacoustic sensing and underwater communication. A novel path-matched differential interferometer fiber optic hydrophone (PMDI-FOH) approach incorporating an integrated-optic component (IOC) is presented in this paper. It is presented to meet the demands for high-quality dynamic measurements, which solves the problems with the conventional homodyne detection system’s low modulation frequency. The IOC functions as a phase-generated carrier (PGC) component. The scheme is investigated both in theory and experiments. The theoretical and experimental results verify the effectiveness of the proposed scheme. It achieves a high SNR of up to 20.29 dB demodulations. The proposed system is cost-effective and has excellent potential in building next-generation underwater sensing and communication networks.
This letter proposes an instantaneous frequency tracking method to
extend the dynamic range for heterodyne fiber optic hydrophones (FOHs).
They are used directly to compensate for large signal amplitudes. The
working principle is discussed, and simulations are conducted. The
simulations achieve at least 20 dB dynamic range improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.