In this work, a modified weak Galerkin finite element method is proposed for solving second order linear parabolic singularly perturbed convection-diffusion equations. The key feature of the proposed method is to replace the classical gradient and divergence operators by the modified weak gradient and modified divergence operators, respectively. We apply the backward finite difference method in time and the modified weak Galerkin finite element method in space on uniform mesh. The stability analyses are presented for both semi-discrete and fully-discrete modified weak Galerkin finite element methods. Optimal order of convergences are obtained in suitable norms. We have achieved the same accuracy with the weak Galerkin method while the degrees of freedom are reduced in our method. Various numerical examples are presented to support the theoretical results. It is theoretically and numerically shown that the method is quite stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.