The purpose of this study was to evaluate the structural performance of steel fiber reinforced concrete (SFRC) coupling beams. Reversed cyclic loading tests were performed with full-scale specimens. The main variable for the tests was the volume fraction ratio of the steel fibers. The results showed that the maximum strength was increased by about 11% with 1% of steel fibers incorporated, and about 24% when the ratio of mixed fibers was doubled to 2%. Because numerous microcracks occurred, decreased crack width due to the bridge effect was observed with the steel fiber reinforcement. Increased diagonal tension crack angles and energy dissipation also appeared as the volume fraction of steel fibers increased. The contribution of shear to the total deformation was decreased while the contribution of rocking was increased as steel fibers were added. Considering the results of these experiments, it can be concluded that steel fiber reinforcement affects the deformation of coupling beams in various ways, and should be considered when estimating the effective stiffness of such beams when SFRC is introduced.
A study was conducted for the flexural retrofit of an old apartment house composed of a reinforced concrete (RC) shear wall structure. For the shear wall, a vertical retrofit was performed to both ends of the wall targeting the slender wall to improve the flexural performance. The retrofit materials were steel plate, epoxy, and non-shrink grout, and they were connected to the existing shear wall using post-installed chemical anchors. The concrete at the wall ends was broken and retrofitted as much as necessary to maintain the shear wall’s length. The points to be noted are the fracture of the welded part of the flexural retrofit and the chemical anchor’s pulling. After the real scale specimen was fabricated by simulating the existing shear wall, the retrofit effect was experimentally verified by breaking the wall ends, retrofitting the ends, and applying repeated cyclic lateral loads. A total of three specimens were fabricated and retrofitted using steel plates and steel tubes. Since this experiment evaluated the flexural performance, the experiment was performed with a cantilever setting. The flexural retrofit effect using steel was analyzed through the load–displacement relationship, stiffness degradation, and energy dissipation, and through this, the bond of the retrofit and the behavior of the wall were verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.