doi: bioRxiv preprint Collectively, our data demonstrate the feasibility and therapeutic benefit of CRISPR/dCas9-mediated modulation of a disease modifier gene, which opens up an entirely new and mutation-independent treatment approach for all MDC1A patients. Moreover, this treatment strategy provides evidence that muscle fibrosis can be reversible to some degree, thus extending the therapeutic window for this disorder. Our data provide a proof-of-concept strategy that can be applied to a variety of disease modifier genes and a powerful therapeutic approach for various inherited and acquired diseases..
Over the last decade, next generation sequencing has become widely implemented in clinical practice. However, as genetic variants of uncertain significance (VUS) are frequently identified, the need for scaled functional interpretation of such variants has become increasingly apparent. One method to address this is saturation genome editing (SGE), which allows for scaled multiplexed functional assessment of single nucleotide variants. The current applications of SGE, however, rely on homology-directed repair (HDR) to introduce variants of interest, which is limited by low editing efficiencies and low product purity. Here, we have adapted CRISPR prime editing for SGE and demonstrated its utility in understanding the functional significance of variants in the NPC1 gene underlying the lysosomal storage disorder Niemann-Pick disease type C1 (NPC). Additionally, we have designed a genome editing strategy that allows for the haploidization of gene loci, which permits isolated variant interpretation in virtually any cell type. By combining saturation prime editing (SPE) with a clinically relevant assay, we have functionally scored and interpreted 256 variants in NPC1 haploidized HEK293T cells. To further demonstrate the applicability of this strategy, we used SPE and cell model haploidization to functionally score 465 variants in the BRCA2 gene. We anticipate that our work will be translatable to any gene with an appropriate cellular assay, allowing for more rapid and accurate diagnosis and improved genetic counselling and ultimately precise patient care.
Normal kidney function depends on the proper development of the nephron: the functional unit of the kidney. Reciprocal signaling interactions between the stroma and nephron progenitor compartment have been proposed to control nephron development. Here, we show that removal of hedgehog intracellular effector smoothened (-deficient mutants) in the cortical stroma results in an abnormal renal capsule, and an expanded nephron progenitor domain with an accompanying decrease in nephron number via a block in epithelialization. We show that stromal-hedgehog-Smo signaling acts through a GLI3 repressor. Whole-kidney RNA sequencing and analysis of FACS-isolated stromal cells identified impaired TGFβ2 signaling in -deficient mutants. We show that neutralization and knockdown of TGFβ2 in explants inhibited nephrogenesis. In addition, we demonstrate that concurrent deletion of in stromal and nephrogenic cells results in decreased nephron formation and an expanded nephrogenic precursor domain similar to that observed in-deficient mutant mice. Together, our data suggest a mechanism whereby a stromal hedgehog-TGFβ2 signaling axis acts to control nephrogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.