High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all quantitative trait loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol-tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2, and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF, and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale.
Summary There is huge variability among yeasts with regard to their efficiency in utilizing glycerol as the sole source of carbon and energy. Certain species show growth rates with glycerol comparable to those reached with glucose as carbon source; others are virtually unable to utilize glycerol, especially in synthetic medium. Most of our current knowledge regarding glycerol uptake and catabolic pathways has been gained from studying laboratory strains of the model yeast Saccharomyces cerevisiae. The growth of these strains on glycerol is dependent on the presence of medium supplements such as amino acids and nucleobases. In contrast, there is only fragmentary knowledge about S. cerevisiae isolates able to grow in synthetic glycerol medium without such supplements as well as about growth of non‐Saccharomyces yeast species on glycerol. Thus, more research is required to understand why certain strains and species show superior growth performance on glycerol compared with common S. cerevisiae laboratory strains. This mini‐review summarizes what is known so far about the gene products and pathways involved in glycerol metabolism and transport in yeast and fungi as well as the regulation of these processes.
BackgroundGlycerol has attracted attention as a carbon source for microbial production processes due to the large amounts of crude glycerol waste resulting from biodiesel production. The current knowledge about the genetics and physiology of glycerol uptake and catabolism in the versatile industrial biotechnology production host Saccharomyces cerevisiae has been mainly based on auxotrophic laboratory strains, and carried out in the presence of growth-supporting supplements such as amino acids and nucleic bases. The latter may have resulted in ambiguous conclusions concerning glycerol growth in this species. The purpose of this study was to re-evaluate growth of S. cerevisiae in synthetic glycerol medium without the addition of supplements.ResultsInitial experiments showed that prototrophic versions of the laboratory strains CEN.PK, W303, and S288c did not exhibit any growth in synthetic glycerol medium without supporting supplements. However, a screening of 52 S. cerevisiae isolates for growth in the same medium revealed a high intraspecies diversity. Within this group significant variation with respect to the lag phase and maximum specific growth rate was observed. A haploid segregant of one good glycerol grower (CBS 6412-13A) was selected for detailed analysis. Single deletions of the genes encoding for the glycerol/H+ symporter (STL1), the glycerol kinase (GUT1), and the mitochondrial FAD+-dependent glycerol 3-phosphate dehydrogenase (GUT2) abolished glycerol growth in this strain, implying that it uses the same glycerol utilization pathway as previously identified in auxotrophic laboratory strains. Segregant analysis of a cross between CBS 6412-13A and CEN.PK113-1A revealed that the glycerol growth phenotype is a quantitative trait. Genetic linkage and reciprocal hemizygosity analysis demonstrated that GUT1 CBS 6412-13A is one of the multiple genetic loci contributing to the glycerol growth phenotype.ConclusionThe S. cerevisiae intraspecies diversity with regard to glycerol growth is a valuable starting point to identify the genetic and molecular basis of this phenotype. This knowledge can be applied for further rational strain improvement with the goal of using glycerol as a carbon source in industrial biotechnology processes based on S. cerevisiae as a production organism.
The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.