In this paper, we present preliminary results of analyzing data from the Dark Web collection using a dynamical systems approach for unsupervised anomaly detection. The goal is to provide a robust, focus-of-attention mechanism to identify emerging threats in time-dependent, unlabelled data sets. In our method, finite-time Lyapunov exponents are used to characterize the time evolution of both the directed network structure and the distribution of text attributes in the forum messages. We provide a description of the technique and a summary of the initial anomaly detection results. We conclude with a summary of results and a brief discussion of promising avenues for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.