The importance of tumor associated neutrophils (TANs) in cancer development is in the meantime well established. Numerous of clinical data document the adverse prognostic effects of neutrophil infiltration in solid tumors. However, certain tumor therapies need functional neutrophils to be effective, suggesting altered neutrophil polarization associated with different outcomes for cancer patients. Therefore, modulation of neutrophilic phenotypes represents a potent therapeutic option, but factors mediating neutrophil polarization are still poorly defined. In this manuscript we provide evidence that type I IFNs alter neutrophilic phenotype into anti‐tumor, both in mice and human. In the absence of IFN‐β, pro‐tumor properties, such as reduced tumor cytotoxicity with low neutrophil extracellular traps (NETs) expression, low ICAM1 and TNF‐α expression, dominated neutrophil phenotypes in primary lesion and premetastatic lung. Interestingly, such neutrophils have significantly prolonged life‐span. Notably, interferon therapy in mice altered TAN polarization towards anti‐tumor N1. Similar changes in neutrophil activation could be observed in melanoma patients undergoing type I IFN therapy. Altogether, these data highlight the therapeutic potential of interferons, suggesting optimization of its clinical use as potent anti‐tumor agent.
Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrinmediated adhesion Highlights d Loss of WRC in macrophages impairs phagocytosis, spreading, and (de)adhesion d WRC loss of function perturbs integrin activation and FAK/ paxillin phosphorylation d Arp2/3 complex and WRC functions on integrin adhesion are at least partly separable
Gene therapy has become an accepted concept for the treatment of a variety of different diseases. In contrast to preclinical models, subjects enrolled in clinical trials, including gene therapy, possess a history of infection with microbes that may influence its safety and efficacy. Especially, viruses that establish chronic infections in the liver, one of the main targets for in vivo gene therapy, raise important concerns. Among them is the hepatitis B virus (HBV), which has chronically infected more than 350 million people worldwide. Here, we investigated the effect of HBV on adeno-associated viral (AAV) vectors, the most frequently applied gene transfer vehicles for in vivo gene therapy. Unexpectedly, we found that HBV greatly improved AAV transduction in cells replicating HBV and identified HBV protein x (HBx) as a key factor. Whereas HBV-positive and -negative cells were indistinguishable with respect to cell-entry efficiency, significantly higher numbers of AAV vector genomes were successfully delivered to the nucleus in the presence of HBV. The HBV-promoting effect was abolished by inhibitors of phosphatidylinositol 3-kinase (PI3K). PI3K was required for efficient trafficking of AAV to the nucleus and was enhanced in HBV-replicating cells and upon HBx expression. Enhancement of AAV transduction was confirmed in vivo using HBV transgenic mice and could successfully be applied to inhibit HBV progeny release. Conclusion: Our results demonstrate that acute, as well as chronic, infections with unrelated viruses change the intracellular milieu, thereby likely influencing gene therapy outcomes. In the case of HBV, HBx-mediated enhancement of AAV transduction is an advantage that could be exploited for development of novel treatments of HBV infection. (HEPATOLOGY 2014;59:2110-2120
Cell migration frequently involves the formation of lamellipodia induced by Rac GTPases activating WAVE regulatory complex (WRC) to drive Arp2/3 complex-dependent actin assembly. Previous genome editing studies in B16-F1 melanoma cells solidified the view of an essential, linear pathway employing the aforementioned components. Here, disruption of the WRC subunit Nap1 (encoded by Nckap1) and its paralog Hem1 (encoded by Nckap1l) followed by serum and growth factor stimulation, or active GTPase expression, revealed a pathway to formation of Arp2/3 complex-dependent lamellipodia-like structures (LLS) that requires both Rac and Cdc42 GTPases, but not WRC. These phenotypes were independent of the WRC subunit eliminated and coincided with the lack of recruitment of Ena/VASP family actin polymerases. Moreover, aside from Ena/VASP proteins, LLS contained all lamellipodial regulators tested, including cortactin (also known as CTTN), the Ena/VASP ligand lamellipodin (also known as RAPH1) and FMNL subfamily formins. Rac-dependent but WRC-independent actin remodeling could also be triggered in NIH 3T3 fibroblasts by growth factor (HGF) treatment or by gram-positive Listeria monocytogenes usurping HGF receptor signaling for host cell invasion. Taken together, our studies thus establish the existence of a signaling axis to Arp2/3 complex-dependent actin remodeling at the cell periphery that operates without WRC and Ena/VASP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.