Summary Three automated listening post‐telemetry studies were undertaken in the Suwannee and Apalachicola estuaries to gain knowledge of habitats use by juvenile Gulf Sturgeons (Acipenser oxyrinchus desotoi) on winter feeding grounds. A simple and reliable method for external attachment of small acoustic tags to the dorsal fin base was developed using shrink‐tubing. Suspending receivers on masts below anchored buoys improved reception and facilitated downloading; a detection range of 500–2500 m was realized. In the Apalachicola estuary, juvenile GS stayed in shallow water (< 2 m) within the estuarine transition zone all winter in the vicinity of the Apalachicola River mouth. Juvenile GS high‐use areas did not coincide with high density benthic macrofauna areas from the most recent (1999) benthos survey. In the Suwannee estuary, juveniles ranged widely and individually throughout oligohaline to mesohaline subareas of the estuary, preferentially using mesohaline subareas seaward of Suwannee Reef (52% of acoustic detections). The river mouth subarea was important only in early and late winter, during the times of adult Gulf Sturgeon migrations (41% of detections). Preferred winter feeding subareas coincided spatially with known areas of dense macrofaunal benthos concentrations. Following a dramatic drop in air and water temperatures, juvenile GS left the river mouth and estuary, subsequently being detected 8 km offshore in polyhaline open Gulf of Mexico waters, before returning to the estuary. Cold‐event offshore excursions demonstrate that they can tolerate full‐salinity polyhaline waters in the open Gulf of Mexico, for at least several days at a time. For juvenile sturgeons, the stress and metabolic cost of enduring high salinity (Jarvis et al., 2001; McKenzie et al., 2001; Singer and Ballantyne, 2002) for short periods in deep offshore waters seems adaptively advantageous relative to the risk of cold‐event mortality in shallow inshore waters of lower salinity. Thus, while juveniles can tolerate high salinities for days to weeks to escape cold events, they appear to make only infrequent use of open polyhaline waters. Throughout the winter foraging period, juvenile GS stayed primarily within the core area of Suwannee River mouth influence, extending about 12 km north and south of the river mouth, and somewhat seaward of Suwannee Reef (< 5 km offshore). None were detected departing the core area past either of the northern or southern acoustic gates, located 66 and 52 km distant from the river mouth, respectively.
Summary Shortnose Sturgeon = SNS (Acipenser brevirostrum) is a small diadromous species with most populations living in large Atlantic coast rivers and estuaries of North America from New Brunswick, Canada, to GA, USA. There are no naturally land‐locked populations, so all populations require access to fresh water and salt water to complete a natural life cycle. The species is amphidromous with use of fresh water and salt water (the estuary) varied across the species range, a pattern that may reflect whether freshwater or saltwater habitats provide optimal foraging and growth conditions. Migration is a dominant behaviour during life history, beginning when fish are hatchling free embryos (southern SNS) or larvae (northeastern and far northern SNS). Migration continues by juveniles and non‐spawning adult life stages on an individual time schedule with fish moving between natal river and estuary to forage or seek refuge, and by spawning adults migrating to and from riverine spawning grounds. Coastal movements by adults throughout the range (but particularly in the Gulf of Maine = GOM and among southern rivers) suggest widespread foraging, refuge use, and widespread colonization of new rivers. Colonization may also be occurring in the Potomac River, MD–VA–DC (mid‐Atlantic region). Genetic studies (mtDNA and nDNA) identified distinct individual river populations of SNS, and recent range‐wide nDNA studies identified five distinct evolutionary lineages of SNS in the USA: a northern metapopulation in GOM rivers; the Connecticut River; the Hudson River; a Delaware River–Chesapeake Bay metapopulation; and a large southern metapopulation (SC rivers to Altamaha River, GA). The Saint John River, NB, Canada, in the Bay of Fundy (north of the GOM), is the sixth distinct genetic lineage within SNS. Life history information from telemetry tracking supports the genetic information documenting extensive movement of adults among rivers within the three metapopulations. However, individual river populations with spawning adults are still the best basal unit for management and recovery planning. The focus on individual river populations should be complemented with attention to migratory processes and corridors that foster metapopulation level risks and benefits. The species may be extirpated at the center of the range, i.e., the mid‐Atlantic region (Chesapeake Bay, MD–VA, and probably, NC), but large rivers in VA, including the James and Potomac rivers, need study. The largest SNS populations in GOM and northeastern rivers, like the Kennebec, Hudson, and Delaware rivers, typically have tens of thousands of adults. This contrasts with southern rivers, where rivers typically have much fewer (<2500) adults, except for the Altamaha River (>6000 adults). River damming in the 19th and 20th Centuries extirpated some populations, and also, created two dysfunctional segmented populations: the Connecticut River SNS in CT–MA and the Santee‐Cooper rivers–Lake Marion SNS in SC. The major anthropogenic impact on SNS in marine waters is fisheries b...
After centuries of overexploitation and habitat loss, many of the world's sturgeon (Acipenseridae) populations are at the brink of extinction. Although significant resources are invested into the conservation and restoration of imperiled sturgeons, the burgeoning commercial culture industry poses an imminent threat to the persistence of many populations. In the past decade, the number and distribution of captive sturgeon facilities has grown exponentially and now encompasses diverse interest groups ranging from hobby aquarists to industrial-scale commercial facilities. Expansion of sturgeon captive culture has largely fallen outside the purview of existing regulatory frameworks, raising concerns that continued growth of this industry has real potential to jeopardize conservation of global sturgeon populations. Here, we highlight some of the most significant threats commercial culture poses to wild populations, with particular emphasis on how releases can accelerate wild population declines through mechanisms such as hybridization, introgression, competition, and disease transmission. We also note that in some circumstances, commercial captive culture has continued to motivate harvest of wild populations, potentially accelerating species' declines. Given the prevalence and trajectory of sturgeon captive culture programs, we comment on modifications to regulatory frameworks that could improve the ability of captive culture to support wild sturgeon conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.