EU-DEMO is a European project, having the ambitious goal to be the first demonstrative power plant based on nuclear fusion. The electrical power that is expected to be produced is in the order of 700–800 MW, to be delivered via a connection to the European High Voltage electrical grid. The initiation and control of fusion processes, besides the problems related to the nuclear physics, need very complex electrical systems. Moreover, also the conversion of the output power is not trivial, especially because of the inherent discontinuity in the EU-DEMO operations. The present article concerns preliminary studies for the feasibility and realization of the nuclear fusion power plant EU-DEMO, with a special focus on the power electrical systems. In particular, the first stage of the study deals with the survey and analysis of the electrical loads, starting from the steady-state loads. Their impact is so relevant that could jeopardy the efficiency and the convenience of the plant itself. Afterwards, the loads are inserted into a preliminary internal distribution grid, sizing the main electrical components to carry out the power flow analysis, which is based on simulation models implemented in the DIgSILENT PowerFactory software.
This paper focuses on the state-of-the-art of unit commitment (UC) and economic dispatch (ED) algorithms suitable for the Italian electricity market. In view of the spread of renewable energy systems (RES), the desired UC algorithm should be able to properly consider the uncertainty affecting key input variables into the formulation of the problem, as well as the different capabilities of dispatched power plants to provide ancillary services (e.g., voltage regulation). The goal of this paper is to resume the developments in UC and ED algorithms which occurred in the last decades, having a particular focus on alternating current (AC) security constrained (SC) approaches and stochastic ones, highlighting the advantages and weakness of each technique. This review is useful for the Italian TSO (Terna) to investigate what is the best solution to formulate a new algorithm to be potentially adopted in the framework of the Italian Ancillary Service Market, striving for an explicit modelization of stochastic variables and voltage constraints. This review is also useful to all system operators (SOs), independently to the market environment in which they operate, because UC algorithms are widely adopted to ensure real-time security of power systems. In conclusion, an SC-UC algorithm which takes into account both stochastic variables and AC formulation does not exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.