Toric metrics on a line bundle of an abelian variety A are the invariant metrics under the natural torus action coming from Raynaud's uniformization theory. We compute here the associated Monge-Ampère measures for the restriction to any closed subvariety of A. This generalizes the computation of canonical measures done by the first author from canonical metrics to toric metrics and from discrete valuations to arbitrary nonarchimedean fields. Contents 1. Introduction 1 2. Notation and preliminaries 4 3. Piecewise linear approximation 6 4. Toric metrics 11 5. Strictly polystable alterations 15 6. Monge-Ampère measures of toric metrics 18 7. The canonical subset 19 Appendix A. Differential forms, currents and positivity 24 References 27
Toric metrics on a line bundle of an abelian variety A are the invariant metrics under the natural torus action coming from Raynaud's uniformization theory. We compute here the associated Monge-Ampère measures for the restriction to any closed subvariety of A. This generalizes the computation of canonical measures done by the first author from canonical metrics to toric metrics and from discrete valuations to arbitrary non-archimedean fields.Résumé. -(Mesures de Monge-Ampère pour les métriques toriques sur les variétés abéliennes) Les métriques toriques sur un fibré en droites sur une variété abélienne A sont les métriques invariantes sous l'action naturelle du tore issue de la théorie de l'uniformisation de Raynaud. Nous calculons les mesures de Monge-Ampère associées pour les restrictions à toutes les sous-variétés fermées de A. Ceci généralise des travaux du premier auteur sur le calcul des mesures canoniques pour des valuations discrètes au cas des métriques toriques pour des corps non archimédiens arbitraires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.