Adolescence is a critical phase of active brain development often characterized by the initiation of marijuana (Cannabis sativa) use. Limited information is known regarding the endogenous cannabinoid system of the adolescent brain as well as related neurotransmitters that appear sensitive to cannabis exposure. We recently observed that adult rats pre-exposed to Δ-9-tetrahydrocannabinol (THC) during adolescence self-administered higher amounts of heroin and had selective impairments of the enkephalin opioid system within the nucleus accumbens (NAc) implicated in reward-related behavior. To explore the ontogeny of the cannabinoid and opioid neuronal systems in association with adolescence THC exposure, rats were examined at different adolescent stages during an intermittent THC paradigm (1.5 mg/kg i.p. every third day) from postnatal days (PNDs) 28-49. Rat brains were examined 24 hours after injection at PND 29 (early adolescence), PND 38 (mid adolescence) and PND 50 (late adolescence) and analyzed for endocannabinoids (anandamide and 2-arachidonoylglycerol), Met-enkephalin, cannabinoid CB 1 receptors and µ opioid receptors (µOR) in the NAc, caudate-putamen and prefrontal cortex (PFC). Of the markers studied, the endocannabinoid levels had the most robust alterations throughout adolescence and were specific to the PFC and NAc. Normal correlations between anandamide and 2-arachidonoylglycerol concentrations in the NAc (positive) and PFC (negative) were reversed by THC. Other significant THC-induced effects were confined to the NAc -increased anandamide, decreased Met-enkephalin and decreased µORs. These findings emphasize the dynamic nature of the mesocorticolimbic endocannabinoid system during adolescence and the selective mesocorticolimbic disturbance as a consequence of adolescent cannabis exposure.
Metabonomic approaches are believed to have the capability of revolutionizing diagnosis of diseases and assessment of patient conditions after medical interventions. In order to ensure comparability of metabonomic 1H NMR data from different studies, we suggest validated sample preparation guidelines for human urine based on a stability study that evaluates effects of storage time and temperature, freeze-drying, and the presence of preservatives. The results indicated that human urine samples should be stored at or below -25 degrees C, as no changes in the 1H NMR fingerprints have been observed during storage at this temperature for 26 weeks. Formation of acetate, presumably due to microbial contamination, was occasionally observed in samples stored at 4 degrees C without addition of a preservative. Addition of a preserving agent is not mandatory provided that the samples are stored at -25 degrees C. Thus, no differences were observed between 1H NMR spectra of nonpreserved urines and urines with added sodium azide and stored at -25 degrees C, whereas the presence of sodium fluoride caused a shift of especially citrate resonances. Freeze-drying of urine and reconstitution in D2O at pH 7.4 resulted in the disappearance of the creatinine CH2 signal at delta 4.06 due to deuteration. A study evaluating the effects of phosphate buffer concentration on signal variability and assessment of the probability of citrate or creatinine resonances crossing bucket border (a boundary between adjacent integrated regions) led to the conclusion that a minimum buffer concentration of 0.3 M is adequate for normal urines used in this study. However, final buffer concentration of 1 M will be required for very concentrated urines.
Extracts of 11 samples of shrimp, crab, fish, fish liver, shellfish and lobster digestive gland (hepatopancreas), including five certified reference materials, were investigated for their contents of arsenic compounds (arsenic speciation). The cation-exchange high-performance liquid chromatography procedure was optimized to separate six cationic arsenicals present in the samples with internal chromatographic standardization by the trimethylselenonium ion, which was detected at m/z 82 pSe), in addition to arsenic at m/z 75, by inductively coupled plasma mass spectrometry. The content of each species (as arsenic atom) relative to the total arsenic extracted from the samples were: arsenobetaine 19-98%, arsenocholine and trimethylarsine oxide O-O.6% and the tetramethylarsonium ion 0-2.2%. Additionally, an unknown arsenic species (Ul) was present at 3.1 -1 8% in the shellfish and in the lobster digestive gland, and another unknown (U2) was present at 0.2-6.4% in all samples. The contents of arsenite and arsenate were 0-1.4%, dimethylarsinate 8.2-29% while monomethylarsonate was detected only in oyster at 0.3% of the total extracted arsenic. Finding tetramethylarsonium ion and arsenocholine in a variety of samples indicates steps of a biosynthetic pathway of arsenic leading to arsenobetaine in the marine environment. The intake of inorganic arsenic via ingestion of the seafood samples that were analysed did not represent a toxicological problem to humans. The limits of detection (LOD) were in the range 10-50 ng g-' (dry mass) with the exception of arsenobetaine for which the LOD was 360 ng g-l.
Secondary metabolites in plant material can be imaged in a simple and robust way by creating an imprint of the plant material on a porous Teflon surface. The Teflon surface serves to extract compounds from the plant material for enhanced desorption electrospray ionization imaging analysis, while maintaining the spatial information of the sample. The method, which remedies for limitations in mass spectrometry imaging of compounds embedded in plant material, was demonstrated on leaves and petals of Hypericum perforatum and leaves of Datura stramonium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.