Direct α-alkylation of unactivated ketones using benzylic alcohols as electrophiles has been achieved at room temperature. This reaction takes place via in situ formed acetal using triflic acid and trimethyl orthoformate. It is believed that methyl vinyl ether formed from the in situ generated dimethyl acetal in the presence of triflic acid undergoes alkylation. Diverse ketones could be alkylated with diarylmethanols, cinnamyl alcohols, and phenyl propargyl alcohols having different electrophilicities.
α-Halohydrazones/ketoximes are transformed into trisubstituted pyrazoles/disubstituted isoxazoles by treatment with phosphine, acyl chloride, and a base. Mechanistic investigations revealed the in situ formation of azo/nitroso olefin intermediates which underwent a tandem phospha-Michael/N-or O-acylation/intramolecular Wittig reaction to afford the heteroarenes in moderate to good yields. Further, proper functionalization of α-haloketoximes and a change of conditions allowed the chemoselective synthesis of chromenone-oximes as well as rearranged isoxazoles, thereby realizing a diversity-oriented synthesis.
Gold(III)-catalysed glycosylation reaction has been developed by employing a new and easily accessible leaving group synthesized from ethyl cyanoacetate. Several nucleophiles like alcohols, thiols, allyltrimethylsilane, trimethylsilyl azide and triethylsilane have been reacted to make the corresponding glycosides in good yields and with marginal to excellent α-selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.