This paper presents the first graphene radiofrequency (RF) monolithic integrated balun circuit. It is composed of four integrated graphene field effect transistors (GFETs). This innovative active balun concept takes advantage of the GFET ambipolar behavior. It is realized using an advanced silicon carbide (SiC) based bilayer graphene FET technology having RF performances of about 20 GHz. Balun circuit measurement demonstrates its high frequency capability. An upper limit of 6 GHz has been achieved when considering a phase difference lower than 10° and a magnitude of amplitude imbalance less than 0.5 dB. Hence, this circuit topology shows excellent performance with large broadband performance and a functionality of up to one-third of the transit frequency of the transistor.
Le graphène en particulier, et les matériaux 2D en général, sont une nouvelle filière de matériaux aux propriétés physiques très intéressantes. Leurs propriétés électroniques, thermiques et mécaniques en font des matériaux de choix pour de nombreuses applications, dans les domaines aussi que les technologies de l’information et de la communication, la santé, l’énergie, le transport. Compte tenu des potentialités de ces matériaux, de nombreux grands programmes de recherche se sont développés au niveau international, pour étudier ces matériaux, et bénéficier des innovations qui en découleraient pour le développement de nouveaux emplois et de nouvelles richesses. Sur le plan de la formation, avec le soutien du GIP CNFM et de l’IDEFI FINMINA obtenu par le réseau du CNFM, le pôle CNFM de Lille s’est doté de nouveaux équipements qui permettent d’explorer, d’analyser, et de fabriquer des composants et systèmes avec ces matériaux 2D. Il s’agit notamment d’un four de croissance de graphène, d’un spectromètre Raman permettant de caractériser les matériaux 2D, du développement d’un système de transfert du graphène sur un matériau hôte. Cette communication va présenter la méthodologies mise en place, pour sensibiliser les étudiants du master 2 sur la manipulation de ces nouveaux matériaux.
In this work, we have investigated the influence of the transfer process on the monocrystalline graphene in terms of quality, morphology and electrical properties by analyzing the data obtained from optical microscopy, scanning electron microscopy, Raman spectroscopy and electrical characterizations. The influence of Cu oxidation on graphene prior to the transfer is also discussed. Our results show that the controlled bubbling electrochemical delamination transfer is an easy and fast transfer technique suitable for transferring large single crystals graphene without degrading the graphene quality. Moreover, Raman spectroscopy investigation reveals that the Cu surface oxidation modifies the strain of the graphene film. We have observed that graphene laying on unoxidized Cu is subject to a biaxial strain in compression, while graphene on Cu oxide is subject to a biaxial strain in tension. However, after graphene was transferred to a host substrate, these strain effects were strongly reduced, leaving a homogeneous graphene on the substrate. The transferred single crystal graphene on silicon oxide substrate was used to fabricate transmission line method (TLM) devices. Electrical measurements show low contact resistance ~150 Ω·µm, which confirms the homogeneity and high quality of transferred graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.